
Sheet 5 solutions

June 3, 2019

Exercise 1: Distance-Only Sensor

In this exercise, you try to locate your friend using her cell phone signals. Suppose
that in the map of Freiburg, the campus of the University of Freiburg is located at m0 =
(10, 8)T , and your friend’s home is situated at m1 = (6, 3)T . You have access to the
data received by two cell towers, which are located at the positions x0 = (12, 4)T and
x1 = (5, 7)T , respectively. The distance between your friend’s cell phone and the towers
can be computed from the intensities of your friend’s cell phone signals. These distance
measurements are disturbed by independent zero-mean Gaussian noise with variances
σ2
0 = 1 for tower 0 and σ2

1 = 1.5 for tower 1. You receive the distance measurements
d0 = 3.9 and d1 = 4.5 from the two towers.

(a) Is your friend more likely to be at home or at the university? Explain your calcu-
lations.

We want to calculate the probability p(m | z) of being at a location m, given the
sensor measurements z. We can use Bayes rule:

p(m | z) =
p(z | m)p(m)

p(z)
(1)

We do not have any prior information about the location, therefore we assume a
uniform prior p(m). p(z) does not depend on m, therefore it can be regarded as
a normalization factor. We can see that without prior information, p(m | z) is
proportional to p(z | m):

p(m | z) ∝ p(z | m) (2)

To answer the question, it is enough to check the likelihood of a measurement z,
given the location m. We can assume that the measurements of both towers are
independent of each other:

p(z | m) = p(d0, d1 | m) (3)
= p(d0 | m)p(d1 | m) (4)

The distance measurements of the towers are disturbed by zero-mean Gaussian
noise. To obtain the likelihood of our measurement, we calculate the true distances
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d̂ between the towers and the query locations and compare them to the measured
distances d. To this end, we evaluate our sensor model, the probability density of
the normal distribution:

p(d | m) =
1√

2πσ2
exp(−(d− d̂)2

2σ2
) (5)

In Python, you can use the build-in function scipy.stats.norm.pdf(x,µ,σ) to evaluate
the probability density of a normal distribution.

• At the university:

Tower 0: d̂0 =
√

(12− 10)2 + (4− 8)2 =
√

20 (6)

p(d0 | m0) =
1√
2π1

exp(−(3.9−
√

20)2

2 · 1
) (7)

Tower 1: d̂1 =
√

(5− 10)2 + (7− 8)2 =
√

26 (8)

p(d1 | m0) =
1√

2π1.5
exp(−(4.5−

√
26)2

2 · 1.5
) (9)

→ p(d0, d1 | m0) = 0.0979 (10)

• At home:

Tower 0: d̂0 =
√

(12− 6)2 + (4− 3)2 =
√

37 (11)

p(d0 | m1) =
1√
2π1

exp(−(3.9−
√

37)2

2 · 1
) (12)

Tower 1: d̂1 =
√

(5− 6)2 + (7− 3)2 =
√

17 (13)

p(d1 | m1) =
1√

2π1.5
exp(−(4.5−

√
17)2

2 · 1.5
) (14)

→ p(d0, d1 | m1) = 0.0114 (15)

It is more likely to obtain the given measurements if our friend is at the university.

(b) Implement a function in Python which generates a 3D-plot of the likelihood p(z|m)
over all locations m in the vicinity of the towers. Furthermore, mark m0, m1, x0
and x1 in the plot. Is the likelihood function which you plotted a probability density
function? Give a reason for your answer.

#!/usr/bin/env python

import math

import numpy as np

import scipy.stats

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
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from matplotlib import cm

def likelihood(m):

"""Calculate the likelihood that your friend is at place m.

Arguments:

m -- place [x,y]

"""

x_0 = np.array([12,4]) # tower 0

x_1 = np.array([5,7]) # tower 1

d_0 = 3.9 # distance measurement 0

d_1 = 4.5 # distance measurement 1

var_0 = 1 # variance 0

var_1 = 1.5 # variance 1

#calculate the expected distance measurements

d_0_hat = math.sqrt(np.sum(np.square(m-x_0)))

d_1_hat = math.sqrt(np.sum(np.square(m-x_1)))

#evaluate sensor model

pdf_0 = scipy.stats.norm.pdf(d_0, d_0_hat,math.sqrt(var_0))

pdf_1 = scipy.stats.norm.pdf(d_1, d_1_hat,math.sqrt(var_1))

return pdf_0 * pdf_1

#locations of interest

m_0 = np.array([10,8]) # uni

m_1 = np.array([6,3]) # home

x_0 = np.array([12,4]) # tower 0

x_1 = np.array([5,7]) # tower 1

#mesh grid for plotting

x = np.arange(3.0,15.0,0.5)

y = np.arange(-5.0,15.0,0.5)

X,Y = np.meshgrid(x,y)

#calculate likelihood for each position

z = np.array([likelihood(np.array([x,y])) for x,y in zip(X.flatten(), Y.flatten())])

Z = z.reshape(X.shape)

#plot

fig = plt.figure()

ax = fig.add_subplot(111, projection=’3d’)

ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=cm.coolwarm,alpha=0.5)
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ax.scatter(m_0[0],m_0[1],likelihood(m_0),c=’g’,marker=’o’,s=100)

ax.scatter(m_1[0],m_1[1],likelihood(m_1),c=’r’,marker=’o’,s=100)

ax.scatter(x_0[0],x_0[1],likelihood(x_0),c=’g’,marker=’^’,s=100)

ax.scatter(x_1[0],x_1[1],likelihood(x_1),c=’r’,marker=’^’,s=100)

ax.set_xlabel(’m_x’)

ax.set_ylabel(’m_y’)

ax.set_zlabel(’likelihood’)

plt.show()

The plotted likelihood is not a probability density function, because we are plot-
ting p(z | m) over map locations m, not measurements z. To get the probability
distribution p(m | z) over map locations m, we need to know p(m) and p(z) to
normalize the distribution.

(c) Now, suppose you have prior knowledge about your friend’s habits which suggests
that your friend currently is at home with probability P (at home) = 0.7, at the
university with P (at university) = 0.3, and at any other place with P (other) = 0.
Use this prior knowledge to recalculate the likelihoods of a).

We use Bayes Rule from Eq. 1. We can either (a) calculate p(z) by summing over
all possible values (law of total probability)

p(z) =
∑
i

p(z|mi)p(mi), (16)

or (b) solve Eq. 1 by normalizing.

(a) Explicitly calculate p(z):

p(z) = p(d0, d1) = p(d0, d1 | m0)p(m0) + p(d0, d1 | m1)p(m1) (17)
= 0.0979 · 0.3 + 0.0114 · 0.7 = 0.0374 (18)

In 1:

Uni: p(m0 | d0, d1) =
p(d0, d1 | m0)p(m0)

p(d0, d1)
(19)

=
0.0979 · 0.3

0.0374
= 0.786 (20)

Home: p(m1 | d0, d1) =
p(d0, d1 | m1)p(m1)

p(d0, d1)
(21)

=
0.01147 · 0.7

0.0374
= 0.214 (22)

(b) Solve by normalizing:

Uni: p(m0 | d0, d1) = µ · p(d0, d1 | m0)p(m0) (23)
Home: p(m1 | d0, d1) = µ · p(d0, d1 | m1)p(m1) (24)
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We use the fact that both probabilities need to sum up to 1 to calculate the
normalization factor µ:

1 = µ · p(d0, d1 | m0)p(m0) + µ · p(d0, d1 | m0)p(m1) (25)

µ =
1

p(d0, d1 | m0)p(m0) + p(d0, d1 | m1)p(m1)
(26)

We can see that the normalization factor µ is just the reciprocal of p(z). Nor-
malization therefore results in exactly the same calculations like in (a).

Exercise 2: Sensor Model

Assume you have a robot equipped with a sensor capable of measuring the distance
and bearing to landmarks. The sensor furthermore provides you with the identity of the
observed landmarks.
A sensor measurement z = (zr, zθ)

T is composed of the measured distance zr and the
measured bearing zθ to the landmark l. Both the range and the bearing measurements
are subject to zero-mean Gaussian noise with variances σ2

r , and σ2
θ , respectively. The

range and the bearing measurements are independent of each other.
A sensor model

p(z | x, l)

models the probability of a measurement z of landmark l observed by the robot from pose
x.
Design a sensor model p(z | x, l) for this type of sensor. Furthermore, explain your sensor
model.
We want to design a sensor model p(z | x, l) to calculate the probability to obtain a
measurement z, given a pose x and a landmark pose l. A sensor measurement z = (zr, zθ)
consists of a distance zr and angle zθ measurement for the landmark. Both measurements
are subject to Gaussian noise with variances σ2

r and σ2
θ , respectively. The robot pose is

given by x = (xx, xy, xθ), the landmark position by l = (lx, ly).
Range and bearing measurements are independent:

p(z | x, l) = p(zr, zθ | x, l) = p(zr | x, l)p(zθ | x, l) (27)

To evaluate our sensor model, we need to evaluate the probability density of a normal
distribution at the measurement zi, with the expected measurement zexp,i as the mean and
the standard deviation σi:

p(zi | x, l) =
1√

2πσ2
i

exp(−
(zi − zexp,i)

2

2σ2
i

) (28)

=
1√

2πσ2
i

exp(−(∆zi)
2

2σ2
i

) (29)

1. range measurement:
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For the range, the expected distance measurement to the landmark is

zexp,r =
√

(lx − xx)2 + (ly − xy)2. (30)

∆z is the difference between the measured and the true distance to landmark l:

∆zr = zr − zexp,r (31)

→ p(zr | x, l) =
1√

2πσ2
r

exp(−(∆zr)
2

2σ2
r

) (32)

2. bearing measurement:

For the bearing, the expected angle measurement to the landmark is

zexp,θ = atan2((ly − xy), (lx − xx))− xθ. (33)

We cannot simply subtract the expected and measured bearing because of the dis-
continuity of the angle representation between (−π, π]. We are looking for the
shortest angular difference between zexp,θ and zθ. Taking both angle differences in-
side the circle into account, we can get the minimum angle between zexp,θ and zθ
by

|∆zθ| = min(|(zθ − zexp,θ)|, 2π − |(zθ − zexp,θ)|) (34)

→ p(zθ | x, l) =
1√

2πσ2
θ

exp(−(|∆zθ|)2

2σ2
θ

) (35)
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