Probabilistic Motion Models

Wolfram Burgard
Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?
Dynamic Bayesian Network for Controls, States, and Sensations
Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model \(p(x_t \mid x_{t-1}, u_t) \).

- The term \(p(x_t \mid x_{t-1}, u_t) \) specifies a posterior probability, that action \(u_t \) carries the robot from \(x_{t-1} \) to \(x_t \).

- In this section we will discuss, how \(p(x_t \mid x_{t-1}, u_t) \) can be modeled based on the motion equations and the uncertain outcome of the movements.
Coordinate Systems

- The configuration of a typical wheeled robot in 3D can be described by six parameters.

- This are the three-dimensional Cartesian coordinates plus the three Euler angles for roll, pitch, and yaw.

- For simplicity, throughout this section we consider robots operating on a planar surface.

- The state space of such systems is three-dimensional \((x,y,\theta)\).
Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based (dead reckoning)

- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.
Example Wheel Encoders

These modules provide +5V output when they "see" white, and a 0V output when they "see" black.

These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

Source: http://www.active-robots.com/
Dead Reckoning

- Derived from “deduced reckoning.”
- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.
- Historically used to log the position of ships.
Reasons for Motion Errors of Wheeled Robots

- Ideal case
- Bump
- Different wheel diameters
- Carpet

and many more ...
Odometry Model

- Robot moves from $\langle x, y, \theta \rangle$ to $\langle x', y', \theta' \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

\[
\begin{align*}
\delta_{trans} &= \sqrt{(x'-x)^2 + (y'-y)^2} \\
\delta_{rot1} &= \text{atan2}(y'-y, x'-x) - \theta \\
\delta_{rot2} &= \theta' - \theta - \delta_{rot1}
\end{align*}
\]
The atan2 Function

- Extends the inverse tangent and correctly copes with the signs of x and y.

\[
\text{atan2}(y, x) = \begin{cases}
\text{atan}(y/x) & \text{if } x > 0 \\
\text{sign}(y) (\pi - \text{atan}(|y/x|)) & \text{if } x < 0 \\
0 & \text{if } x = y = 0 \\
\text{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0
\end{cases}
\]
Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise.

\[
\begin{align*}
\hat{\delta}_{rot1} &= \delta_{rot1} + \mathcal{E}\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}| \\
\hat{\delta}_{trans} &= \delta_{trans} + \mathcal{E}\alpha_3 |\delta_{trans}| + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|) \\
\hat{\delta}_{rot2} &= \delta_{rot2} + \mathcal{E}\alpha_1 |\delta_{rot2}| + \alpha_2 |\delta_{trans}|
\end{align*}
\]
Typical Distributions for Probabilistic Motion Models

Normal distribution

\[\mathcal{N}_\sigma(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}} \]

Triangular distribution

\[\mathcal{T}_\sigma(x) = \begin{cases} 0 & \text{if } |x| > \sqrt{6\sigma^2} \\ \frac{\sqrt{6\sigma^2} - |x|}{6\sigma^2} & \text{if } |x| \leq \sqrt{6\sigma^2} \end{cases} \]
Calculating the Probability Density (zero-centered)

- For a normal distribution

 1. Algorithm `prob_normal_distribution(a,b)`:

 2. return \(\frac{1}{\sqrt{2\pi} \cdot b^2} \exp \left\{ -\frac{1}{2} \frac{a^2}{b^2} \right\} \)

- For a triangular distribution

 1. Algorithm `prob_triangular_distribution(a,b)`:

 2. return \(\max \left\{ 0, \frac{1}{\sqrt{6} \cdot b} - \frac{|a|}{6 \cdot b^2} \right\} \)
Calculating the Posterior Given x, x', and Odometry

1. Algorithm \textbf{motion\textunderscore model\textunderscore odometry}(x, x', u)
2. \(\delta_{\text{trans}} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}\)
3. \(\delta_{\text{rot1}} = \text{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}\)
4. \(\delta_{\text{rot2}} = \theta' - \bar{\theta} - \delta_{\text{rot1}}\)
5. \(\hat{\delta}_{\text{trans}} = \sqrt{(x' - x)^2 + (y' - y)^2}\)
6. \(\hat{\delta}_{\text{rot1}} = \text{atan2}(y' - y, x' - x) - \bar{\theta}\)
7. \(\hat{\delta}_{\text{rot2}} = \theta' - \bar{\theta} - \hat{\delta}_{\text{rot1}}\)
8. \(p_1 = \text{prob}(\delta_{\text{rot1}} - \hat{\delta}_{\text{rot1}}, \alpha_1 | \delta_{\text{rot1}} | + \alpha_2 \delta_{\text{trans}})\)
9. \(p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \delta_{\text{trans}} + \alpha_4 (| \delta_{\text{rot1}} | + | \delta_{\text{rot2}} |))\)
10. \(p_3 = \text{prob}(\delta_{\text{rot2}} - \hat{\delta}_{\text{rot2}}, \alpha_1 | \delta_{\text{rot2}} | + \alpha_2 \delta_{\text{trans}})\)
11. return \(p_1 \cdot p_2 \cdot p_3\)
Application

- Repeated application of the motion model for short movements.
- Typical banana-shaped distributions obtained for the 2d-projection of the 3d posterior.
Sample-Based Density Representation
Sample-Based Density Representation
How to Sample from a Normal Distribution?

- Sampling from a normal distribution

1. Algorithm \texttt{sample_normal_distribution}(b):

2. return \(\frac{1}{2} \sum_{i=1}^{12} \text{rand}(-b, b) \)
Normally Distributed Samples

10^6 samples
How to Sample from Normal or Triangular Distributions?

- Sampling from a normal distribution

1. Algorithm `sample_normal_distribution(b)`:

2. return \[\frac{1}{2} \sum_{i=1}^{12} \text{rand}(-b, b) \]

- Sampling from a triangular distribution

1. Algorithm `sample_triangular_distribution(b)`:

2. return \(\frac{\sqrt{6}}{2} \left[\text{rand}(-b, b) + \text{rand}(-b, b) \right] \)
For Triangular Distribution

10^3 samples

10^4 samples

10^5 samples

10^6 samples
How to Obtain Samples from Arbitrary Functions?
Rejection Sampling

- Sampling from arbitrary distributions
- Sample x from a uniform distribution from $[-b,b]$
- Sample y from $[0, \max f]$
- if $f(x) > y$ keep the sample x
 otherwise reject it
Rejection Sampling

Sampling from arbitrary distributions

1. Algorithm \texttt{sample_distribution}(f,b):
2. repeat
3. \hspace{1cm} \(x = \text{rand}(-b, b) \)
4. \hspace{1cm} \(y = \text{rand}(0, \max\{f(x) \mid x \in [-b, b]\}) \)
5. \hspace{1cm} until (\(y \leq f(x) \))
6. return \(x \)
Example

- Sampling from

\[f(x) = \begin{cases}
 \text{abs}(x) & x \in [-1; 1] \\
 0 & \text{otherwise}
\end{cases} \]
Sample Odometry Motion Model

1. **Algorithm** `sample_motion_model(u, x):

 \[u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle \]

1. \[\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 \mid \delta_{rot1} \mid + \alpha_2 \delta_{trans}) \]
2. \[\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_2 \delta_{trans} + \alpha_4 (\mid \delta_{rot1} \mid + \mid \delta_{rot2} \mid)) \]
3. \[\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 \mid \delta_{rot2} \mid + \alpha_2 \delta_{trans}) \]

4. \[x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1}) \]
5. \[y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1}) \]
6. \[\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2} \]
7. **Return** \(\langle x', y', \theta' \rangle \)
Examples (Odometry-Based)
Sampling from Our Motion Model
Velocity-Based Model

\[u = (v, \omega)^T \]
Noise Model for the Velocity-Based Model

- The measured motion is given by the true motion corrupted with noise.

\[
\hat{\mathbf{v}} = \mathbf{v} + \mathbf{\varepsilon}_{\alpha_1|v|+\alpha_2|\omega|}
\]
\[
\hat{\mathbf{\omega}} = \mathbf{\omega} + \mathbf{\varepsilon}_{\alpha_3|v|+\alpha_4|\omega|}
\]

- Discussion: What is the disadvantage of this noise model?
The $(\hat{v}, \hat{\omega})$-circle constrains the final orientation (2D manifold in a 3D space)

Better approach:

\[
\hat{v} = v + \mathcal{E}_{\alpha_1|v|+\alpha_2|\omega|}
\]

\[
\hat{\omega} = \omega + \mathcal{E}_{\alpha_3|v|+\alpha_4|\omega|}
\]

\[
\hat{\gamma} = \mathcal{E}_{\alpha_5|v|+\alpha_6|\omega|}
\]

Term to account for the final rotation
Motion Including 3rd Parameter

\[
x' = x - \frac{\dot{v}}{\hat{\omega}} \sin \theta + \frac{\dot{v}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t)
\]
\[
y' = y + \frac{\dot{v}}{\hat{\omega}} \cos \theta - \frac{\dot{v}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t)
\]
\[
\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t
\]

Term to account for the final rotation
Equation for the Velocity Model

\[x_{t-1} = (x, y, \theta)^T \]
\[x_t = (x', y', \theta')^T \]

Center of circle:

\[
\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix}
\]

some constant (distance to ICC)

(center of circle is orthogonal to the initial heading)
Equation for the Velocity Model

\[x_{t-1} = (x, y, \theta)^T \]
\[x_t = (x', y', \theta')^T \]

Center of circle:

\[
\begin{pmatrix}
 x^* \\
 y^*
\end{pmatrix}
= \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 -\lambda \sin \theta \\
 \lambda \cos \theta
\end{pmatrix}
= \begin{pmatrix}
 \frac{x + x'}{2} + \mu(y - y') \\
 \frac{y + y'}{2} + \mu(x' - x)
\end{pmatrix}
\]

some constant (the center of the circle lies on a ray half way between x and x' and is orthogonal to the line between x and x')
Equation for the Velocity Model

\[
x_{t-1} = (x, y, \theta)^T
\]
\[
x_t = (x', y', \theta')^T
\]

Some constant

Center of circle:

\[
\begin{pmatrix}
x^* \\
y^*
\end{pmatrix} = \begin{pmatrix}
x \\
y
\end{pmatrix} + \begin{pmatrix}
\frac{x+y}{2} + \mu(y-y') \\
\frac{y+y'}{2} + \mu(x'-x)
\end{pmatrix}
\]

Allows us to solve the equations to:

\[
\mu = \frac{1}{2} \frac{(x-x') \cos \theta + (y-y') \sin \theta}{(y-y') \cos \theta - (x-x') \sin \theta}
\]
Equation for the Velocity Model

\[x_{t-1} = (x, y, \theta)^T \]
\[x_t = (x', y', \theta')^T \]

\[
\begin{pmatrix}
 x^* \\
 y^*
\end{pmatrix} = \begin{pmatrix}
 \frac{x + x'}{2} + \mu(y - y') \\
 \frac{y + y'}{2} + \mu(x' - x)
\end{pmatrix} \quad \mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}
\]

and

\[r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2} \]
\[\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*) \]
Equation for the Velocity Model

- The parameters of the circle:

$$ r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2} $$

$$ \Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*) $$

- allow for computing the velocities as

$$ \nu = \frac{\Delta \theta}{\Delta t} r^* $$

$$ \omega = \frac{\Delta \theta}{\Delta t} $$
Posterior Probability for Velocity Model

1: **Algorithm motion_model_velocity**(x_t, u_t, x_{t-1}): $p(x_t | x_{t-1}, u_t)$

2: $$\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}$$

3: $$x^* = \frac{x + x'}{2} + \mu(y - y')$$

4: $$y^* = \frac{y + y'}{2} + \mu(x' - x)$$

5: $$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$$

6: $$\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*)$$

7: $$\hat{v} = \frac{\Delta \theta}{\Delta t} r^*$$

8: $$\hat{\omega} = \frac{\Delta \theta}{\Delta t}$$

9: $$\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$$

10: **return** $\text{prob}(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2) \cdot \text{prob}(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2) \cdot \text{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)$
Sampling from Velocity Model

1: Algorithm sample_motion_model_velocity(u_t, x_{t-1}):

2: \[\hat{v} = v + \text{sample}(\alpha_1 v^2 + \alpha_2 \omega^2) \]

3: \[\hat{\omega} = \omega + \text{sample}(\alpha_3 v^2 + \alpha_4 \omega^2) \]

4: \[\hat{\gamma} = \text{sample}(\alpha_5 v^2 + \alpha_6 \omega^2) \]

5: \[x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega} \Delta t) \]

6: \[y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega} \Delta t) \]

7: \[\theta' = \theta + \hat{\omega} \Delta t + \hat{\gamma} \Delta t \]

8: return $x_t = (x', y', \theta')^T$
Examples (Velocity-Based)
Map-Consistent Motion Model

\[p(x'|u, x) \neq p(x'|u, x, m) \]

Approximation:

\[p(x'|u, x, m) = \eta p(x'|m)p(x'|u, x) \]
Summary

- We discussed motion models for odometry-based and velocity-based systems.
- We discussed ways to calculate the posterior probability $p(x' | x, u)$.
- We also described how to sample from $p(x' | x, u)$.
- Typically the calculations are done in fixed time intervals Δt.
- In practice, the parameters of the models have to be learned.
- We also discussed how to improve this motion model to take the map into account.