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Abstract
The goal of this document is to prove some properties of Gaussian

distributions and the relationship between the generic Bayes filter with
the Kalman filter if the underlying distributions are Gaussians. We limit
the analysis on the one dimensional case, as the proofs are shorter. The
proofs generalize to the multivariate case by using scalar products and
quadratic forms.

1 Univariate Gaussian Distributions

The Gaussian (Normal) distribution is a continuous probability distribution
with the follow probability density function (pdf):

p
(
x;µ, σ2

)
=

1√
2πσ2

exp{−1

2

(x− µ)
2

σ2
}. (1)

We then say that a random variable X is normally (Gaussian) distributed and
write X ∼ N

(
µ, σ2

)
.

The parameters of the pdf represent the first two moments of the distribution

µ = EX [X] =

∫ ∞
−∞

xp
(
x;µ, σ2

)
dx (2)

σ2 = EX [(X − µ)2] =

∫ ∞
−∞

(x− µ)2p
(
x;µ, σ2

)
dx (3)

1.1 Derivation of the Probability Density Function of the
Product of two Gaussian

Assume we have two random variables with Gaussian pdf

X1 ∼ N
(
µ1, σ

2
1

)
⇒ p1 (x) =

1√
2πσ2

1

exp

{
−1

2

(x− µ1)
2

σ2
1

}
, (4)

X2 ∼ N
(
µ2, σ

2
2

)
⇒ p2 (x) =

1√
2πσ2

2

exp

{
−1

2

(x− µ2)
2

σ2
2

}
. (5)
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What is the distribution of the product of the two pdf, p̂ (x) = p1 (x) · p2 (x)?
Computing the product, we have

p1 (x) · p2 (x) = η exp

{
−1

2

(
(x− µ1)

2

σ2
1

+
(x− µ2)

2

σ2
2

)}
, (6)

where η is a normalization factor to ensure the density sum up to one and is a
proper pdf.

If we expand the terms in the exponential part and collect them with respect
to x2 and x, we have

(x− µ1)
2

σ2
1

+
(x− µ2)

2

σ2
2

= (7)

=
σ2
2 · (x− µ1)

2
+ σ2

1 · (x− µ2)
2

σ2
1 · σ2

2

(8)

=
σ2
2x

2 − 2xσ2
2µ1 + σ2

2µ
2
1 + σ2

1x
2 − 2xσ2

1µ2 + σ2
1µ

2
2

σ2
1 · σ2

2

(9)

=
σ2
1 + σ2

2

σ2
1 · σ2

2

x2 − 2
σ2
2µ1 + σ2

1µ
2
2

σ2
1 · σ2

2

x+
σ2
2µ

2
1 + σ2

1µ
2
2

σ2
1 · σ2

2

. (10)

Let now consider a generic Gaussian pdf with mean µ̂ and variance σ̂ and
expand the terms in the exponential part as well. We obtain

(x− µ̂)
2

σ̂2
=

1

σ̂2
x2 − 2

µ̂

σ̂2
x+

µ̂2

σ̂2
(11)

We now match the corresponding terms for x and x2 to obtain the parameters
of the new Gaussian. Note that since the pdf is a function of x, we can dismiss
the terms that do not depend on x, since they will be incorporated into the
normalization term η. In practice, we need to solve the system (this time in µ̂
and σ̂)

1

σ̂2
=

σ2
1 + σ2

2

σ2
1 · σ2

2

(12)

µ̂

σ̂2
=

σ2
2µ1 + σ2

1µ
2
2

σ2
1 · σ2

2

. (13)

Solving for the first equation, we have

σ̂2 =
σ2
1 · σ2

2

σ2
1 + σ2

2

. (14)

Substituting this result into the second equation, we have

µ̂ =
σ2
2µ1 + σ2

1µ
2
2

σ2
1 · σ2

2

· σ̂2 (15)

=
σ2
2µ1 + σ2

1µ
2
2

σ2
1 · σ2

2

· σ
2
1 · σ2

2

σ2
1 + σ2

2

(16)

=
σ2
2µ1 + σ2

1µ
2
2

σ2
1 + σ2

2

. (17)
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1.2 Derivation of the Probability Density Function of the
Convolution of two Gaussian

Assume we have two random variables, X and Y and we know that

X ∼ N
(
µX , σ

2
X

)
⇒ p (x) =

1√
2πσ2

X

exp

{
−1

2

(x− µX)
2

σ2
X

}
, (18)

Y |x ∼ N
(
ax+ b, σ2

r

)
⇒ p (y | x) =

1√
2πσ2

r

exp

{
−1

2

(y − ax− b)2

σ2
r

}
, (19)

i.e., Y is obtained from an affine transformation of x. What is the distribution of
Y ? According to the law of total probability, we need to compute the following
integral

p(y) =

∫ ∞
−∞

p(y|x)p(x)dx (20)

If we know that the the distribution of Y is Gaussian, we could limit ourselves
to compute the moments of the distribution, without explicitly solve the integral.
We have, for the mean

µY = EY [Y ] =

∫ ∞
−∞

y

(∫ ∞
−∞

p(y|x)p(x)dx

)
dy (21)

=

∫ ∞
−∞

p(x)

(∫ ∞
−∞

yp(y|x)dy

)
dx (22)

=

∫ ∞
−∞

EY |x[Y ]p(x)dx (23)

=

∫ ∞
−∞

(ax+ b)p(x)dx (24)

= a

∫ ∞
−∞

xp(x)dx+ b (25)

= a EX [X] + b (26)

= aµX + b, (27)

where we used the relation between the expected value, its integral and the
mean of a Gaussian distribution.

In a similar way, we can compute the variance. Let first recall the relation

E[(X − E[X])2] = E[X2 + E[X]2 − 2XE[X]] (28)

= E[X2] + E[X]2 − 2E[X]E[X] (29)

= E[X2]− E[X]2. (30)
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Exploiting that and the definition of variance, we can compute

σ2
Y = EY [(Y − EY [Y ])2] = EY [Y 2]− EY [Y ]2 (31)

=

∫ ∞
−∞

y2
(∫ ∞
−∞

p(y|x)p(x)dx

)
dy − EY [Y ]2 (32)

=

∫ ∞
−∞

p(x)

(∫ ∞
−∞

y2p(y|x)dy

)
dx− EY [Y ]2 (33)

=

∫ ∞
−∞

p(x)
(
EY |x[Y 2]

)
dx− EY [Y ]2 (34)

=

∫ ∞
−∞

p(x)
(
EY |x[(Y − EY |x[Y ])2] + EY |x[Y ]2

)
dx− EY [Y ]2 (35)

=

∫ ∞
−∞

p(x)
(
σ2
r + (ax+ b)2

)
dx− EY [Y ]2 (36)

= σ2
r +

∫ ∞
−∞

(ax+ b)2p(x)dx− EY [Y ]2 (37)

= σ2
r + EX [(aX + b)2]− EY [Y ]2 (38)

= σ2
r + EX [(aX + b− EX [(aX + b)])2] + EX [(aX + b)]2 − EY [Y ]2 (39)

= σ2
r + EX [(aX + b− aEX [X]− b)2] + (aµX + b)2 − EY [Y ]2 (40)

= σ2
r + a2EX [(X − EX [X])2] + (aµX + b)2 − (aµX + b)2 (41)

= σ2
r + a2σ2

X . (42)

In general, however, we might not know that the distribution is Gaussian
and computing the first two moments does not tell us which kind of distribution
it is. In this case, we need to compute the full integral. To do that, we use two
tricks. The first is the solution of this integral∫ ∞

−∞
exp

{
−1

2

(x− µ)
2

σ2

}
dx =

√
2πσ2. (43)

The second is the trick of completing the square to bring ourselves to that
integral form.

With those two tricks, we can finally compute the integral

p(y) =

∫ ∞
−∞

p(y|x)p(x)dx (44)

= η

∫ ∞
−∞

exp

{
−1

2

(x− µX)
2

σ2
X

}
exp

{
−1

2

(y − ax− b)2

σ2
r

}
dx, (45)

= η

∫ ∞
−∞

exp

{
−1

2

(x− µX)
2

σ2
X

− 1

2

(y − ax− b)2

σ2
r

}
dx, (46)

where we collected all normalization terms in η. Ideally, we would like to de-
compose the exponent in two terms: one that depends on x and can be written
in the squared form for which we can compute the integral, and one which does
not and we can put outside the the integral. In practice, we want to find Lx
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and Ly, such that

L = Lx + Ly =
(x− µX)

2

σ2
X

+
(y − ax− b)2

σ2
r

(47)

Lx =
(x− β)

2

α2
(48)

To do so, we need to complete the square. Do you remember the rules for
solving a quadratic equation? We will use the same one. We want to transform

ax2 + bx+ c (49)

in something like

1

α2
(x− β)2 + κ. (50)

By matching the coefficients we have

α2 =
1

a
; β = − b

2a
; κ = c− b2

4a
. (51)

Let now expand the exponential term to bring ourselves in the first situa-
tion1.

L = σ−2X x2 − 2σ−2X xµX + σ−2X µ2
X + σ−2r a2x2 − 2ax(y − b) + σ−2r (y − b)2 (52)

= (σ−2X + σ−2r a2)x2 − 2(σ−2X µX + σ−2r a(y−b))x+ σ−2X µ2 + σ−2r (y−b)2 (53)

= (σ−2X + σ−2r a2)

(
x−

σ−2X µX + σ−2r a(y−b)
σ−2X + σ−2r a2

)2

︸ ︷︷ ︸
Lx

+

+ σ−2X µ2 + σ−2r (y−b)2 −
(σ−2X µX + σ−2r a(y−b))2

σ−2X + σ−2r a2︸ ︷︷ ︸
Ly

. (54)

Let now simplify Ly. Expanding the squares and rearranging terms we obtain

Ly =
(σ−2X + σ−2r a2)σ−2X µ2

X + (σ−2X + σ−2r a2)σ−2r (y−b)2

σ−2X + σ−2r a2
+

+
−σ−4X µ2

X − σ−4r a2(y−b)2 − 2σ−2X µXσ
−2
r a(y−b)

σ−2X + σ−2r a2
(55)

=
σ−2r σ−2X (a2µ2

X + (y−b)2 − 2aµX(y−b))
σ−2X + σ−2r a2

(56)

=
σ−2r σ−2X (y − aµX − b)2

σ−2X + σ−2r a2
(57)

1For simplicity I will write σ−2 instead of 1
σ2
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Putting everything together, we have

p(y) =

∫ ∞
−∞

p(y|x)p(x)dx (58)

=
1√

2πσ2
X

1√
2πσ2

r

∫ ∞
−∞

exp

{
−1

2
(Lx + Ly)

}
dx (59)

=
1√

2πσ2
X

1√
2πσ2

r

exp

{
−1

2
Ly

}∫ ∞
−∞

exp

{
−1

2
Lx

}
dx (60)

=
1√

2πσ2
X

1√
2πσ2

r

√
2π(σ−2X + σ−2r a2) exp

{
−1

2
Ly

}
(61)

=

√
σ−2X + σ−2r a2√

2πσ2
Xσ

2
r

exp

{
−1

2

σ−2r σ−2X (y − aµX − b)2

σ−2X + σ−2r a2

}
(62)

=
1√

2πσY
exp

{
−1

2

(y − µY )2

σ−2Y

}
, (63)

where

µY = aµX + b (64)

σ2
Y =

1
σ2
X

+ a2

σ2
r

1
σ2
rσ

2
X

= σ2
r + a2σ2

X (65)

This shows that the resulting distribution is Gaussian with mean µY = aµX + b
and variance σ2

Y = σ2
r + a2σ2

X

2 One-Dimensional Kalman Filter

Consider the following one-dimensional linear system

xt = atxt−1 + btut + εt (66)

zt = ctxt + δt, (67)

where

εt ∼ N
(
0, σ2

Q,t

)
, δt ∼ N

(
0, σ2

R,t

)
. (68)

Let also assume that the belief about the initial state is Gaussian x0 ∼ N
(
µ0, σ

2
0

)
.

In this probabilistic setting, the Kalman filter is an implementation of the
Bayes filter when all the distributions are Gaussians and the observation and
motion models are linear. The Kalman filter keeps track of the mean and the
variance of the filtering density during the predict and update cycle. Since the
density is Gaussian, those two statistics are sufficient and therefore the Kalman
filter is optimal for the linear-Gaussian case.

In the remainder of this section we will show how to derive the Kalman filter
equation from the generic framework of the Bayes filter.

6



2.1 Predict Step

In the prediction step of the Bayes filter we have

bel(xt) =

∫ ∞
−∞

p(xt|ut, xt−1)bel(xt−1)dxt−1. (69)

From the recursive step and the linear Gaussian system, we also have that

bel(xt−1) ∼ N
(
µt−1, σ

2
t−1
)

(70)

p(xt|ut, xt−1) ∼ N
(
atxt−1 + btut, σ

2
Q,t

)
. (71)

Following the derivation we did in Section 1.2 and using the results of (64)
and (65), we have that the resulting distribution is still a Gaussian distribution

bel(xt) ∼ N
(
µt, σ

2
t

)
(72)

µt = atµt−1 + btut (73)

σ2
t = a2tσ

2
t−1 + σ2

Q,t. (74)

Note that the last two equations are exaxtly the prediction equations of the
Kalman filter.

2.2 Update Step

In the correction step of the Bayes filter we have

bel(xt) = ηp(zt|xt)bel(xt). (75)

From the update step (previous subsection) and the linear-Gaussian observation,
we also have that

bel(xt) ∼ N
(
µt, σ

2
t

)
(76)

p(zt|xt) ∼ N
(
ctxt, σ

2
R,t

)
. (77)

Expanding the exponents of the product and rearranging terms, we have

(zt − ctxt)2

σ2
R,t

+
(xt − µt)

2

σ2
t

= (78)

=
σ2
t c

2
t + σ2

R,t

σ2
t · σ2

R,t

x2 − 2
σ2
R,tµt + σ2

t ctzt

σ2
t · σ2

R,t

x+
σ2
R,tµ

2
t + σ2

t z
2
t

σ2
t · σ2

R,t

. (79)

The expression is the same we had in Section 1.1. Using the results of (17)
and (14), we have that the resulting distribution is still a Gaussian

bel(xt) ∼ N
(
µt, σ

2
t

)
(80)

µt =
σ2
R,tµt + σ2

t ctzt

σ2
t c

2
t + σ2

R,t

(81)

σ2
t =

σ2
t · σ2

R,t

σ2
t c

2
t + σ2

R,t

. (82)
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Those two equations, however, look different than the Kalman filter one.
Where does the Kalman gain coming from? To obtain the standard form of the
Kalman filter, we need to rearrange few terms. Let’s do it for the mean

µt =
σ2
R,tµt + σ2

t ctzt

σ2
t c

2
t + σ2

R,t

(83)

=
σ2
R,tµt + σ2

t ctzt + σ2
t c

2
tµt − σ2

t c
2
tµt

σ2
t c

2
t + σ2

R,t

(84)

=
σ2
t c

2
t + σ2

R,t

σ2
t c

2
t + σ2

R,t

µt +
σ2
t ct

σ2
t c

2
t + σ2

R,t

(zt − ctµt) (85)

= µt +Kt(zt − ctµt) (86)

Kt =
σ2
t ct

σ2
t c

2
t + σ2

R,t

(87)

Similarly, one can do the same trick for the variance

σ2
t =

σ2
t · σ2

R,t

σ2
t c

2
t + σ2

R,t

(88)

=
σ2
t · σ2

R,t + σ4
t c

2
t − σ4

t c
2
t

σ2
t c

2
t + σ2

R,t

(89)

=
σ2
R,t + σ2

t c
2
t

σ2
t c

2
t + σ2

R,t

σ2
t −

σ2
t c

2
t

σ2
t c

2
t + σ2

R,t

σ2
t (90)

= σ2
t −Ktctσ

2
t = (1−Ktct)σ

2
t . (91)

Kt =
σ2
t ct

σ2
t c

2
t + σ2

R,t

(92)

A similar proof can be done for multivariate distributions, replacing squares
with symmetric products of matrices, fractions with matrix inversion and keep-
ing track of when a matrix must be transpose.
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