
Albert-Ludwigs-Universität Freiburg Institut für Informatik
Lecture: Introduction to Mobile Robotics
Summer term 2020 Prof. Dr. Wolfram Burgard

Daniel Büscher
Lukas Luft

Marina Kollmitz
mobilerobotics@informatik.uni-freiburg.de

Sheet 7
Topic: Extended Kalman Filter

Due date: 21.06.2019

General Notice

In this exercise, you will implement an extended Kalman filter (EKF). A code skeleton
with the EKF work flow is provided for you. A visualization of the EKF state is also
provided by the framework.

The following folders are contained in the kf framework.tar.gz tarball:

data This folder contains files representing the world definition and sensor readings used
by the filter.

code This folder contains the EKF framework with stubs for you to complete.

You can run the EKF in the terminal: python kalman filter.py. It will only work
properly once you filled in the blanks in the code.

Some implementation tips:

• To read in the sensor and landmark data, we have used dictionaries. Dictionaries
provide an easier way to access data structs based on single or multiple keys. The
functions read sensor data and read world data in the read data.py file read in
the data from the files and build a dictionary for each of them with time stamps as
the primary keys.

To access the sensor data from the sensor readings dictionary, you can use

sensor readings[timestamp,’sensor’][’id’]

sensor readings[timestamp,’sensor’][’range’]

sensor readings[timestamp,’sensor’][’bearing’]

and for odometry you can access the dictionary as

sensor readings[timestamp,’odometry’][’r1’]

sensor readings[timestamp,’odometry’][’t’]

sensor readings[timestamp,’odometry’][’r2’]

To access the positions of the landmarks from landmarks dictionary , you can use

position x = landmarks[id][0]

position y = landmarks[id][1]

1

Exercise 1: Theoretical Considerations

The EKF is an implementation of the Bayes Filter.

(a) The Bayes filter processes three probability density functions, i. e.,
p(xt | ut, xt−1), p(zt | xt), and bel(xt). State the normal distributions of the EKF
which correspond to these probabilities.

(b) Explain in a few sentences all of the components of the EKF, i. e., µt, Σt, g, Gt, h,
Ht, Qt, Rt, Kt and why they are needed. What are the differences and similarities
between the KF and the EKF?

Exercise 2: EKF Prediction Step

We assume a differential drive robot operating on a 2-dimensional plane, i.e., its state
is defined by 〈x, y, θ〉. Its motion model is defined on slide 10 (Odometry Model) in the
chapter Probabilistic Motion Models of the lecture slides.

(a) Derive the Jacobian matrix Gt of the noise-free motion function g. Do not use
Python.

(b) Implement the prediction step of the EKF in the function prediction step using
your Jacobian Gt. For the noise in the motion model assume

Qt =

 0.2 0 0
0 0.2 0
0 0 0.02

 .

Exercise 3: EKF Correction Step

(a) Derive the Jacobian matrix Ht of the noise-free measurement function h of a range-
only sensor. Do not use Python.

(b) Implement the correction step of the EKF in the function correction step using
your Jacobian Ht. For the noise in the sensor model assume that Rt is the diagonal
square matrix

Rt =


0.5 0 0 . . .
0 0.5 0 . . .
0 0 0.5 . . .
...

...
...

. . .

 ∈ Rsize(zt)×size(zt).

Once you have successfully implemented all the functions, after running the filter script
you should see the state of the robot being plotted incrementally with each time stamp.

2

