Albert-Ludwigs-Universität Freiburg Lecture: Introduction to Mobile Robotics

Summer term 2020

Institut für Informatik

Prof. Dr. Wolfram Burgard
Daniel Büscher
Lukas Luft
Marina Kollmitz

mobilerobotics@informatik.uni-freiburg.de

Sheet 7

Topic: Extended Kalman Filter
Due date: 21.06.2019

General Notice

In this exercise, you will implement an extended Kalman filter (EKF). A code skeleton with the EKF work flow is provided for you. A visualization of the EKF state is also provided by the framework.

The following folders are contained in the kf_framework.tar.gz tarball:

data This folder contains files representing the world definition and sensor readings used by the filter.

code This folder contains the EKF framework with stubs for you to complete.

You can run the EKF in the terminal: python kalman_filter.py. It will only work properly once you filled in the blanks in the code.

Some implementation tips:

• To read in the sensor and landmark data, we have used dictionaries. Dictionaries provide an easier way to access data structs based on single or multiple keys. The functions read_sensor_data and read_world_data in the read_data.py file read in the data from the files and build a dictionary for each of them with time stamps as the primary keys.

To access the sensor data from the sensor_readings dictionary, you can use

```
sensor_readings[timestamp,'sensor']['id']
sensor_readings[timestamp,'sensor']['range']
sensor_readings[timestamp,'sensor']['bearing']
```

and for odometry you can access the dictionary as

```
sensor_readings[timestamp,'odometry']['r1']
sensor_readings[timestamp,'odometry']['t']
sensor_readings[timestamp,'odometry']['r2']
```

To access the positions of the landmarks from landmarks dictionary, you can use

```
position_x = landmarks[id][0]
position_y = landmarks[id][1]
```

Exercise 1: Theoretical Considerations

The EKF is an implementation of the Bayes Filter.

- (a) The Bayes filter processes three probability density functions, i. e., $p(x_t \mid u_t, x_{t-1}), p(z_t \mid x_t)$, and $bel(x_t)$. State the normal distributions of the EKF which correspond to these probabilities.
- (b) Explain in a few sentences all of the components of the EKF, i. e., μ_t , Σ_t , g, G_t , h, H_t , Q_t , R_t , K_t and why they are needed. What are the differences and similarities between the KF and the EKF?

Exercise 2: EKF Prediction Step

We assume a differential drive robot operating on a 2-dimensional plane, i.e., its state is defined by $\langle x, y, \theta \rangle$. Its motion model is defined on slide 10 (Odometry Model) in the chapter Probabilistic Motion Models of the lecture slides.

- (a) Derive the Jacobian matrix G_t of the noise-free motion function g. Do not use Python.
- (b) Implement the prediction step of the EKF in the function prediction_step using your Jacobian G_t . For the noise in the motion model assume

$$Q_t = \left(\begin{array}{ccc} 0.2 & 0 & 0\\ 0 & 0.2 & 0\\ 0 & 0 & 0.02 \end{array}\right).$$

Exercise 3: EKF Correction Step

- (a) Derive the Jacobian matrix H_t of the noise-free measurement function h of a range-only sensor. Do not use Python.
- (b) Implement the correction step of the EKF in the function correction_step using your Jacobian H_t . For the noise in the sensor model assume that R_t is the diagonal square matrix

$$R_{t} = \begin{pmatrix} 0.5 & 0 & 0 & \dots \\ 0 & 0.5 & 0 & \dots \\ 0 & 0 & 0.5 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \in \mathbb{R}^{\operatorname{size}(z_{t}) \times \operatorname{size}(z_{t})}.$$

Once you have successfully implemented all the functions, after running the filter script you should see the state of the robot being plotted incrementally with each time stamp.

2