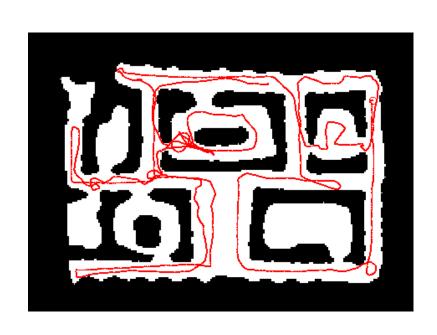
Introduction to Mobile Robotics

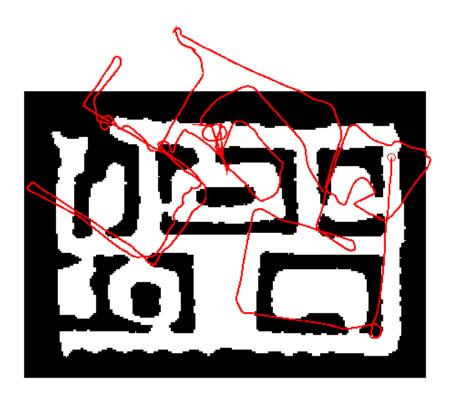
Probabilistic Motion Models

Wolfram Burgard

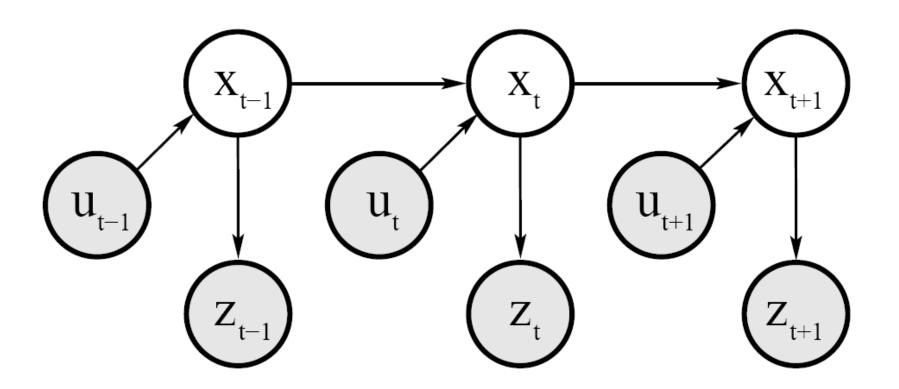
Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?





Dynamic Bayesian Network for Controls, States, and Sensations

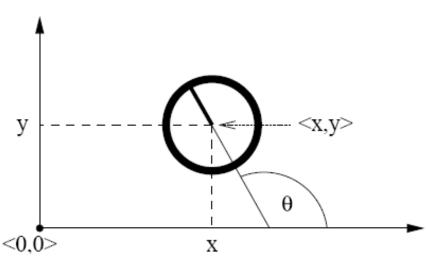


Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p(x_t \mid x_{t-1}, u_t)$.
- The term $p(x_t \mid x_{t-1}, u_t)$ specifies a posterior probability, that action u_t carries the robot from x_{t-1} to x_t .
- In this section we will discuss, how $p(x_t \mid x_{t-1}, u_t)$ can be modeled based on the motion equations and the uncertain outcome of the movements.

Coordinate Systems

- The configuration of a typical wheeled robot in 3D can be described by six parameters.
- This are the three-dimensional Cartesian coordinates plus the three Euler angles for roll, pitch, and yaw.
- For simplicity, throughout this section we consider robots operating on a planar surface.
- The state space of such systems is threedimensional (x,y,θ).



Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.

Example Wheel Encoders

These modules provide +5V output when they "see" white, and a 0V output when they "see" black.



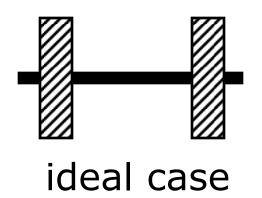
These disks are manufactured out of high quality laminated color plastic to offer a very crisp black to white transition. This enables a wheel encoder sensor to easily see the transitions.

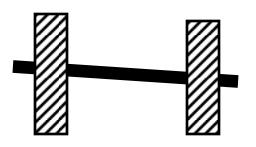
Source: http://www.active-robots.com/

Dead Reckoning

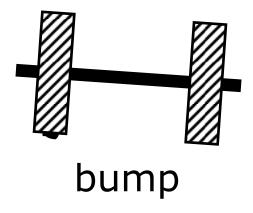
- Derived from "deduced reckoning."
- Mathematical procedure for determining the present location of a vehicle.
- Achieved by calculating the current pose of the vehicle based on its velocities and the time elapsed.
- Historically used to log the position of ships.

Reasons for Motion Errors of Wheeled Robots

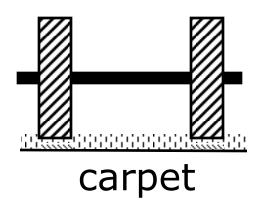




different wheel diameters



and many more ...



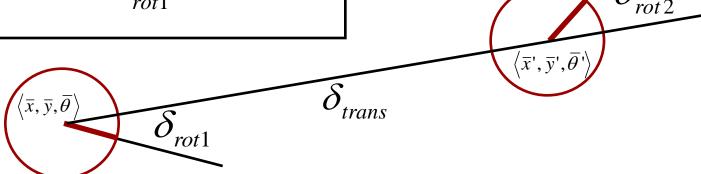
Odometry Model

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$



The atan2 Function

 Extends the inverse tangent and correctly copes with the signs of x and y.

$$\operatorname{atan2}(y,x) \ = \begin{cases} \operatorname{atan}(y/x) & \text{if } x > 0 \\ \operatorname{sign}(y) \left(\pi - \operatorname{atan}(|y/x|)\right) & \text{if } x < 0 \\ 0 & \text{if } x = y = 0 \\ \operatorname{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0 \end{cases}$$

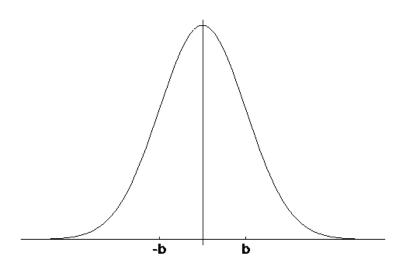
Noise Model for Odometry

 The measured motion is given by the true motion corrupted with noise.

$$\begin{split} \hat{\delta}_{rot1} &= \delta_{rot1} + \varepsilon_{\alpha_1 |\delta_{rot1}| + \alpha_2 |\delta_{trans}|} \\ \hat{\delta}_{trans} &= \delta_{trans} + \varepsilon_{\alpha_3 |\delta_{trans}| + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|)} \\ \hat{\delta}_{rot2} &= \delta_{rot2} + \varepsilon_{\alpha_1 |\delta_{rot2}| + \alpha_2 |\delta_{trans}|} \end{split}$$

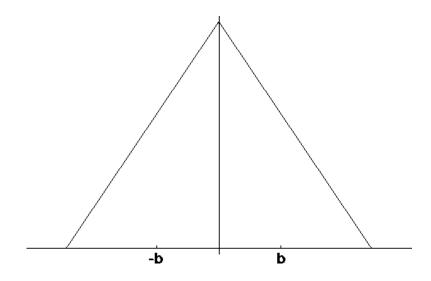
Typical Distributions for Probabilistic Motion Models

Normal distribution



$$\varepsilon_{\sigma^2}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{x^2}{\sigma^2}}$$

Triangular distribution



$$\varepsilon_{\sigma^{2}}(x) = \begin{cases} 0 \text{ if } |x| > \sqrt{6\sigma^{2}} \\ \frac{\sqrt{6\sigma^{2} - |x|}}{6\sigma^{2}} \end{cases}$$

Calculating the Probability Density (zero-centered)

- For a normal distribution
 - 1. Algorithm **prob_normal_distribution**(a,b):
 - 2. return $\frac{1}{\sqrt{2\pi b^2}} \exp\left\{-\frac{1}{2}\frac{a^2}{b^2}\right\}$

std. deviation

query point

- For a triangular distribution
 - 1. Algorithm **prob_triangular_distribution**(*a*,*b*):
 - 2. **return** $\max \left\{ 0, \frac{1}{\sqrt{6} \ b} \frac{|a|}{6 \ b^2} \right\}$

Calculating the Posterior Given x, x', and Odometry

hypotheses odometry

1. Algorithm motion_model_odometry
$$(x, x')$$
 (\bar{x}, \bar{x}')

2.
$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

3.
$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

4.
$$\delta_{rot2} = \theta' - \theta - \delta_{rot1}$$

5.
$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$

6.
$$\hat{\delta}_{rot1} = \operatorname{atan2}(y'-y, x'-x) - \hat{\theta}$$

7.
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

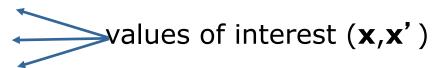
8.
$$p_1 = \operatorname{prob}(\delta_{\text{rot1}} - \hat{\delta}_{\text{rot1}}, \alpha_1 \mid \delta_{\text{rot1}} \mid +\alpha_2 \delta_{\text{trans}})$$

9.
$$p_2 = \text{prob}(\delta_{\text{trans}} - \hat{\delta}_{\text{trans}}, \alpha_3 \delta_{\text{trans}} + \alpha_4 (|\delta_{\text{rot1}}| + |\delta_{\text{rot2}}|))$$

10.
$$p_3 = \operatorname{prob}(\delta_{\text{rot}2} - \hat{\delta}_{\text{rot}2}, \alpha_1 | \delta_{\text{rot}2} | + \alpha_2 \delta_{\text{trans}})$$

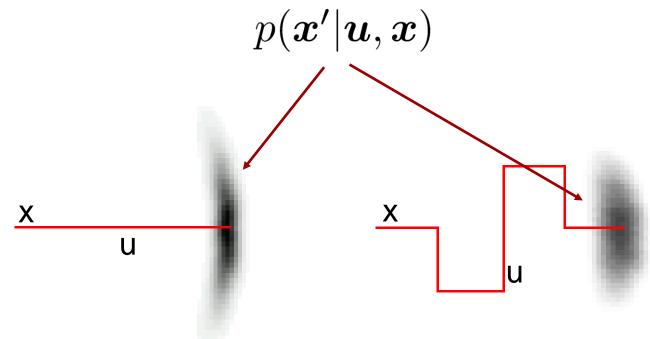
11. return
$$p_1 \cdot p_2 \cdot p_3$$

 \rightarrow odometry params (\mathbf{u})

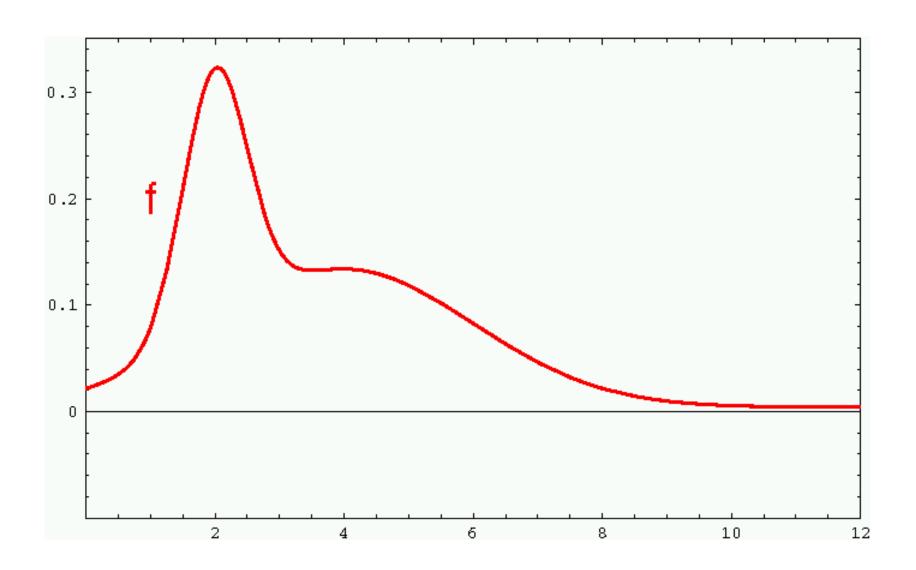


Application

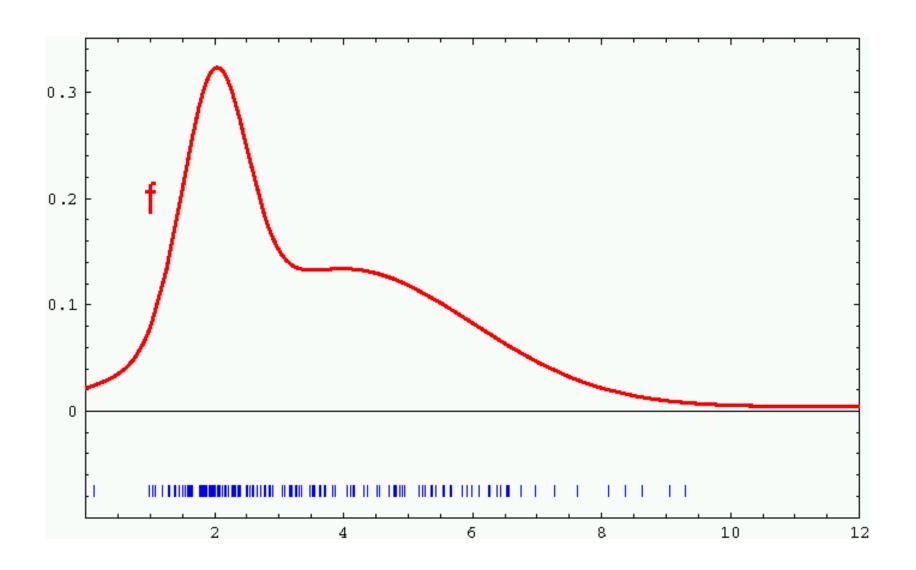
- Repeated application of the motion model for short movements.
- Typical banana-shaped distributions obtained for the 2d-projection of the 3d posterior.



Sample-Based Density Representation



Sample-Based Density Representation

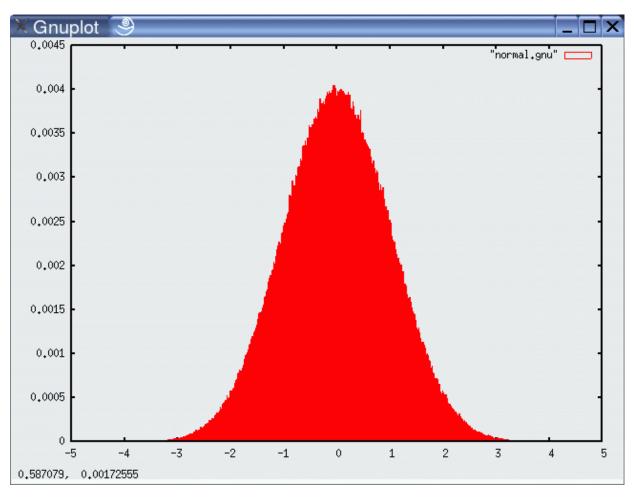


How to Sample from a Normal Distribution?

- Sampling from a normal distribution
 - 1. Algorithm **sample_normal_distribution**(b):

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

Normally Distributed Samples



10⁶ samples

How to Sample from Normal or Triangular Distributions?

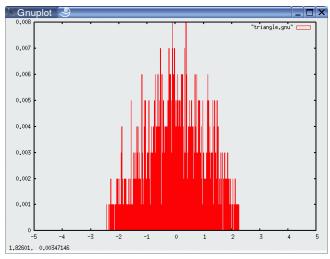
- Sampling from a normal distribution
 - 1. Algorithm **sample_normal_distribution**(b):

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

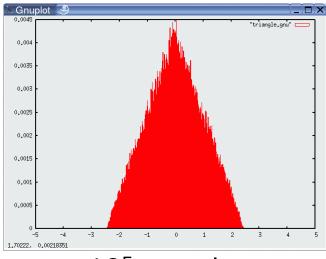
- Sampling from a triangular distribution
 - 1. Algorithm **sample_triangular_distribution**(*b*):

2. return
$$\frac{\sqrt{6}}{2} \left[\operatorname{rand}(-b, b) + \operatorname{rand}(-b, b) \right]$$

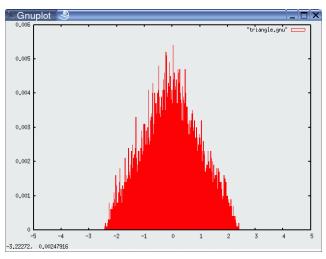
For Triangular Distribution



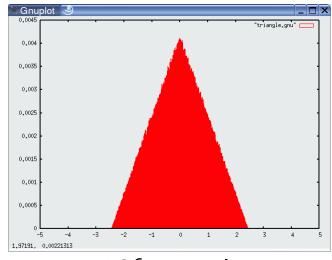
10³ samples



10⁵ samples

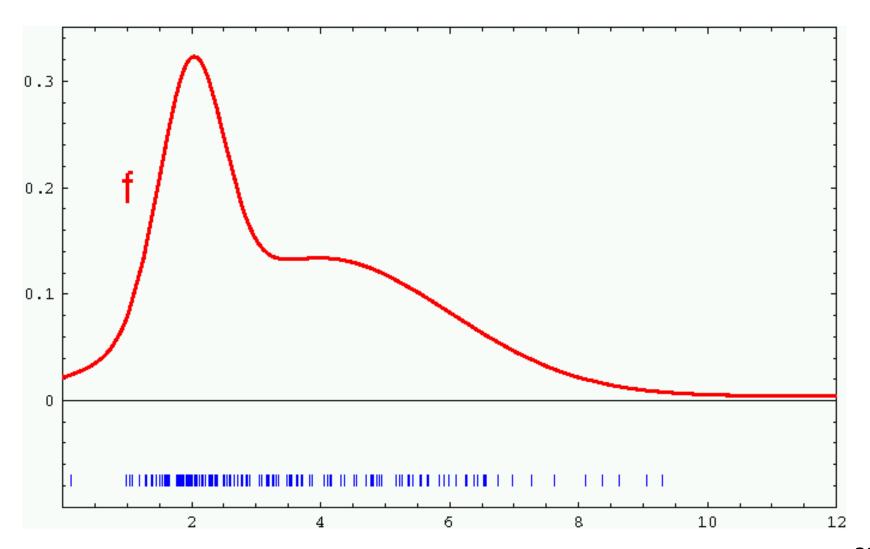


10⁴ samples



10⁶ samples

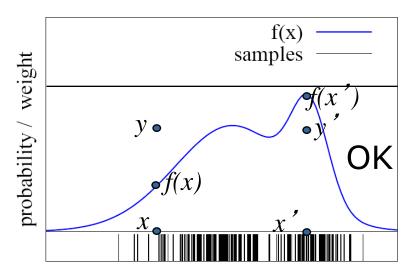
How to Obtain Samples from Arbitrary Functions?



Rejection Sampling

- Sampling from arbitrary distributions
- Sample x from a uniform distribution from [-b,b]
- Sample y from [0, max f]
- if f(x) > yotherwise

keep the sample *x* e reject it



Rejection Sampling

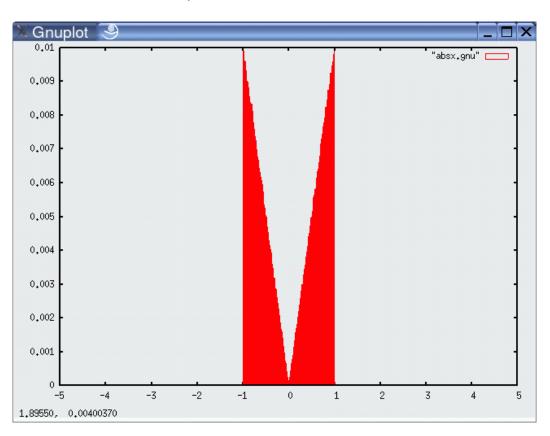
Sampling from arbitrary distributions

1. Algorithm sample_distribution(f,b):
2. repeat
3. $x = \operatorname{rand}(-b, b)$ 4. $y = \operatorname{rand}(0, \max\{f(x) \mid x \in [-b, b]\})$ 5. until $(y \leq f(x))$ 6. return x

Example

Sampling from

$$f(x) = \begin{cases} abs(x) & x \in [-1; 1] \\ 0 & otherwise \end{cases}$$



Sample Odometry Motion Model

Algorithm sample_motion_model(u, x):

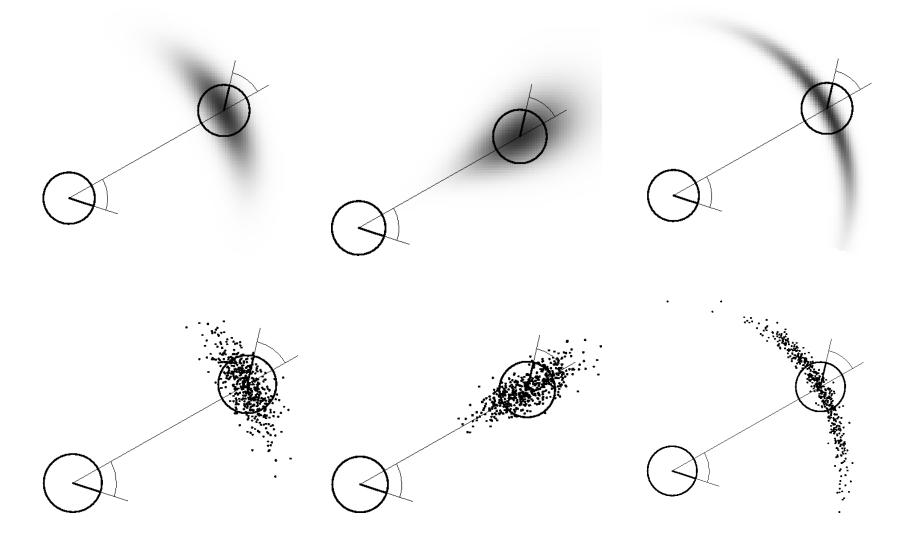
$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

- 1. $\hat{\delta}_{rot1} = \delta_{rot1} + \text{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
- 2. $\hat{\delta}_{trans} = \delta_{trans} + \text{sample}(\alpha_3 \delta_{trans} + \alpha_4 (|\delta_{rot1}| + |\delta_{rot2}|))$
- 3. $\hat{\delta}_{rot2} = \delta_{rot2} + \text{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 | \delta_{trans})$
- 4. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$
- 5. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$

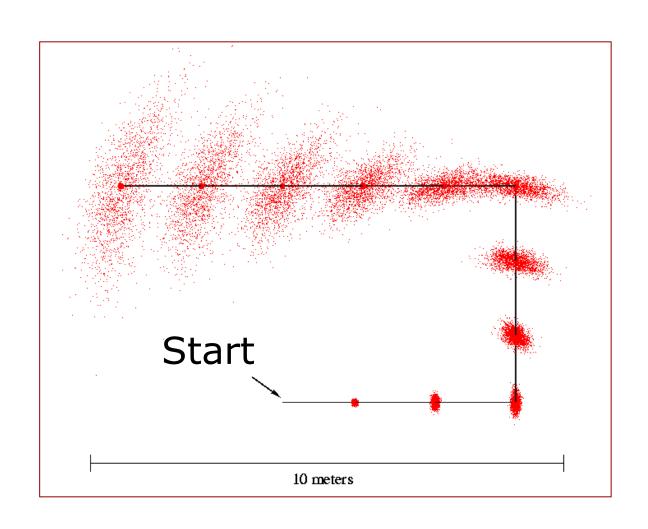
sample_normal_distribution

- $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$
- 7. Return $\langle x', y', \theta' \rangle$

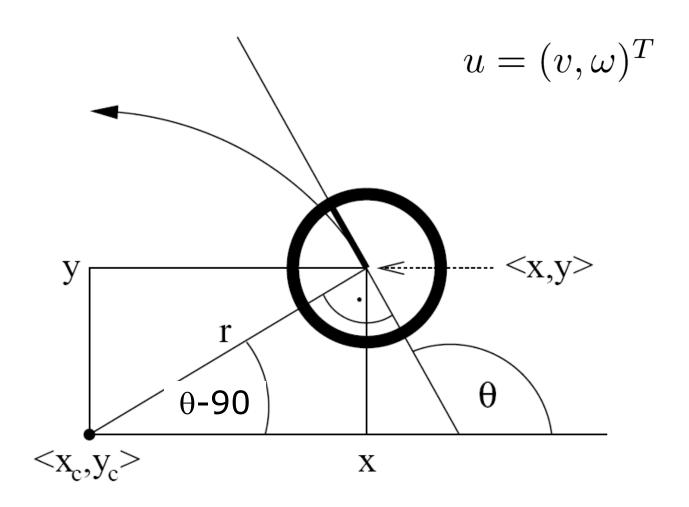
Examples (Odometry-Based)



Sampling from Our Motion Model



Velocity-Based Model



Noise Model for the Velocity-Based Model

The measured motion is given by the true motion corrupted with noise.

$$\hat{\omega} = v + \varepsilon_{\alpha_1|v| + \alpha_2|\omega|}$$

$$\hat{\omega} = \omega + \varepsilon_{\alpha_3|v| + \alpha_4|\omega|}$$

Discussion: What is the disadvantage of this noise model?

Noise Model for the Velocity-Based Model

- The $(\hat{v}, \hat{\omega})$ -circle constrains the final orientation (2D manifold in a 3D space)
- Better approach:

$$\hat{v} = v + \mathcal{E}_{\alpha_1|v| + \alpha_2|\omega|}$$

$$\hat{\omega} = \omega + \mathcal{E}_{\alpha_3|v| + \alpha_4|\omega|}$$

$$\hat{\gamma} = \mathcal{E}_{\alpha_5|v| + \alpha_6|\omega|}$$

Term to account for the final rotation

Motion Including 3rd Parameter

$$x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$$

$$y' = y + \frac{\hat{v}}{\hat{\omega}}\cos\theta - \frac{\hat{v}}{\hat{\omega}}\cos(\theta + \hat{\omega}\Delta t)$$

$$\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$$

Term to account for the final rotation

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

Center of circle:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix}$$

some constant (distance to ICC)

(center of circle is orthogonal to the initial heading)

$$x_{t-1} = (x, y, \theta)^T$$

$$x_t = (x', y', \theta')^T \qquad \text{some constant}$$

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix}$$

some constant (the center of the circle lies on a ray half way between x and x' and is orthogonal to the line between x and x')

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

some constant

Center of circle:

$$\left(\begin{array}{c} x^* \\ y^* \end{array} \right) = \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} -\lambda \sin \theta \\ \lambda \cos \theta \end{array} \right) = \left(\begin{array}{c} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{array} \right)$$

Allows us to solve the equations to:

$$\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$$

$$x_{t-1} = (x, y, \theta)^T$$
$$x_t = (x', y', \theta')^T$$

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix} \quad \mu = \frac{1}{2} \frac{(x-x')\cos\theta + (y-y')\sin\theta}{(y-y')\cos\theta - (x-x')\sin\theta}$$

and

$$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$$

$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

• The parameters of the circle:

$$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$$

$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

allow for computing the velocities as

$$v = \frac{\Delta \theta}{\Delta t} r^*$$

$$\omega = \frac{\Delta \theta}{\Delta t}$$

Posterior Probability for Velocity Model

1: Algorithm motion_model_velocity(
$$x_t, u_t, x_{t-1}$$
): $p(x_t \mid x_{t-1}, u_t)$

2: $\mu = \frac{1}{2} \frac{(x - x') \cos \theta + (y - y') \sin \theta}{(y - y') \cos \theta - (x - x') \sin \theta}$

3: $x^* = \frac{x + x'}{2} + \mu(y - y')$

4: $y^* = \frac{y + y'}{2} + \mu(x' - x)$

5: $r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$

6: $\Delta \theta = \text{atan2}(y' - y^*, x' - x^*) - \text{atan2}(y - y^*, x - x^*)$

7: $\hat{v} = \frac{\Delta \theta}{\Delta t} r^*$

8: $\hat{\omega} = \frac{\Delta \theta}{\Delta t}$

9: $\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$

10: $\text{return prob}(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2) \cdot \text{prob}(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2)$
 $\cdot \text{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)$

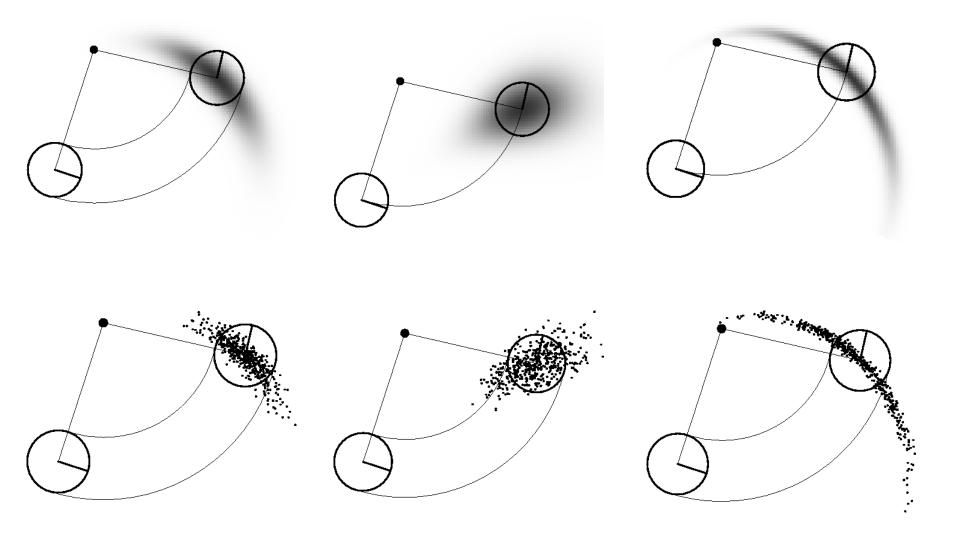
Sampling from Velocity Model

1: Algorithm sample_motion_model_velocity(u_t, x_{t-1}):

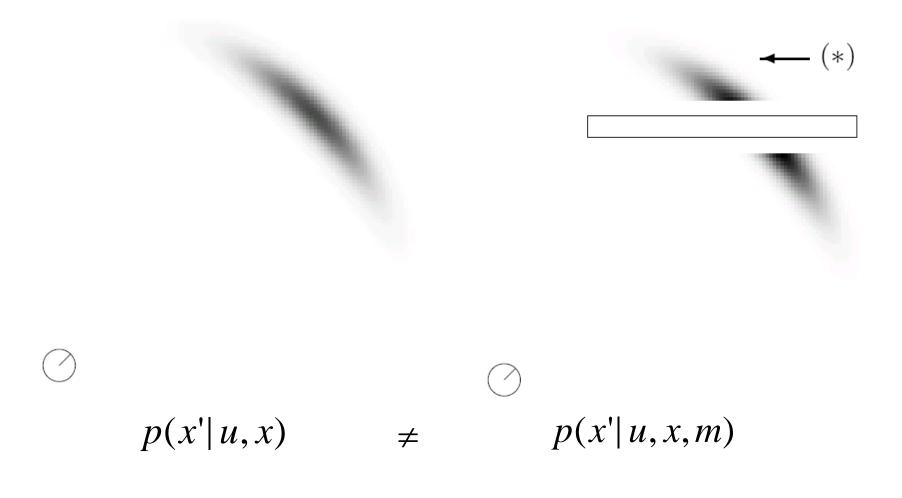
2:
$$\hat{v} = v + \mathbf{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)$$

3: $\hat{\omega} = \omega + \mathbf{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)$
4: $\hat{\gamma} = \mathbf{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)$
5: $x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega}\Delta t)$
6: $y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t)$
7: $\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$
8: $\mathbf{return} \ x_t = (x', y', \theta')^T$

Examples (Velocity-Based)



Map-Consistent Motion Model



Approximation: $p(x'|u, x, m) = \eta p(x'|m)p(x'|u, x)$

Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability p(x'/x, u).
- We also described how to sample from p(x'/x, u).
- Typically the calculations are done in fixed time intervals Δt .
- In practice, the parameters of the models have to be learned.
- We also discussed how to improve this motion model to take the map into account.