Introduction to Mobile Robotics Bayes Filter – Particle Filter and Monte Carlo Localization

Lukas Luft, Wolfram Burgard

Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)

Mathematical Description

Set of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$

State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s^{[i]}}(x)$$

Function Approximation

Particle sets can be used to approximate functions

- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples from a function/distribution?

Bayes filter with particle sets

Measurement update

$$bel(x) \leftarrow p(z|x)\overline{bel}(x)$$

= $p(z|x)\sum_{i} w_i \,\delta_{s^{[i]}}(x) = \sum_{i} p(z|s^{[i]}) w_i \,\delta_{s^{[i]}}(x)$

Motion update

$$\overline{bel}(x) \leftarrow \int p(x|u, x^{-}) \operatorname{bel}(x^{-}) dx^{-}$$
$$= \int p(x|u, x^{-}) \sum_{i} w_{i} \, \delta_{s^{[i]}}(x^{-}) dx^{-} = \sum_{i} p(x|u, s^{[i]}) w_{i}_{6}$$

Rejection Sampling

- Let us assume that f(x) < a for all x</p>
- Sample x from a uniform distribution
- Sample c from [0,a]
- if f(x) > c keep the sample otherwise reject the sample

Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is called target
- g is called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$
- Derivation: See webpage

Importance Sampling with Resampling

Weighted samples

After resampling

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

Sensor Information: Importance Sampling

Robot Motion

 $\begin{array}{c} p(x \mid u) \\ \mathbf{p(s)} \end{array}$

x

Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"

Particle Filter Algorithm

1. Algorithm **particle_filter**(S_{t-1} , u_t , z_t):

$$2. \quad S_t = \emptyset, \quad \eta = 0$$

- **3.** For $i = 1, \square, n$ Generate new samples
- Sample index j(i) from the discrete distribution given by w_{t-1} 4. 5.
 - Sample \mathbf{x}_{t}^{i} from $p(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \mathbf{u}_{t})$ using $\mathbf{x}_{t-1}^{j(i)}$ and \mathbf{u}_{t}

$$6. \qquad W_t^j = p(\boldsymbol{z}_t \mid \boldsymbol{x}_t^j)$$

$$\eta = \eta + W_t^{\prime}$$

9. For $i = 1, \square, n$

 $\mathbf{S} = \mathbf{S} \cup \{\langle \mathbf{X}_t^i, \mathbf{W}_t^j \rangle\}$ 8.

Compute importance weight Update normalization factor Add to new particle set

0.
$$W_t^j = W_t^j / \eta$$
 Normalize weights

Particle Filter Algorithm

Resampling

- Given: Set *S* of weighted samples.
- Wanted : Random sample, where the probability of drawing x_i is given by w_i.
- Typically done n times with replacement to generate new sample set S'.

Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

- 1. Algorithm **systematic_resampling**(*S*,*n*):
- 2. $S' = \emptyset, c_1 = w^1$ 3. For i = 2...n Generate cdf 4. $c_i = c_{i-1} + w^i$ 5. $u_1 \sim U] 0, n^{-1}], i = 1$ Initialize threshold
- 6. For j = 1...n

7. While
$$(u_j > c_i)$$

8 $i = i + 1$

9.
$$S' = S' \cup \{< x^i, n^{-1} > \}$$

10.
$$u_{j+1} = u_j + n^-$$

Draw samples ... Skip until next threshold reached

Insert Increment threshold

11. Return S'

Also called stochastic universal sampling

Mobile Robot Localization

- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

[For details, see PDF file on the lecture web page]

start pose

end pose

According to the estimated motion

- Decompose the motion into
 - Traveled distance
 - Start rotation
 - End rotation

- Uncertainty in the translation of the robot: Gaussian over the traveled distance
- Uncertainty in the rotation of the robot:
 Gaussians over start and end rotation
- For each particle, draw a new pose by sampling from these three individual normal distributions

Proximity Sensor Model Reminder

Mobile Robot Localization Using Particle Filters (1)

- Each particle is a potential pose of the robot
- The set of weighted particles approximates the posterior belief about the robot's pose (target distribution)

Mobile Robot Localization Using Particle Filters (2)

- Particles are drawn from the motion model (proposal distribution)
- Particles are weighted according to the observation model (sensor model)
- Particles are resampled according to the particle weights

Mobile Robot Localization Using Particle Filters (3)

Why is resampling needed?

- We only have a finite number of particles
- Without resampling: The filter is likely to loose track of the "good" hypotheses
- Resampling ensures that particles stay in the meaningful area of the state space

Sample-based Localization (sonar)

Initial Distribution

After Incorporating Ten Ultrasound Scans

After Incorporating 65 Ultrasound Scans

Estimated Path

Using Ceiling Maps for Localization

[Dellaert et al. 99]

Vision-based Localization

Under a Light

Measurement z:

P(z|x):

Next to a Light

Measurement z:

Elsewhere

Measurement z:

P(z|x):

Global Localization Using Vision

Vision-based Localization

Limitations

- The approach described so far is able
 - to track the pose of a mobile robot and
 - to globally localize the robot
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert a fixed number of samples with randomly chosen poses
- This corresponds to the assumption that the robot can be teleported at any point in time to an arbitrary location
- Alternatively, insert such samples inverse proportional to the average likelihood of the observations (the lower this likelihood the higher the probability that the current estimate is wrong).

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model arbitrary and thus also non-Gaussian distributions
- Proposal to draw new samples
- Weights are computed to account for the difference between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary – PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood model (likelihood of the observations).
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.
- This leads to one of the most popular approaches to mobile robot localization