Introduction to Mobile Robotics

Summary

Wolfram Burgard

Probabilistic Robotics

Probabilistic Robotics

Key idea: Explicit representation of uncertainty

(using the calculus of probability theory)

- Perception = state estimation
- Action = utility optimization

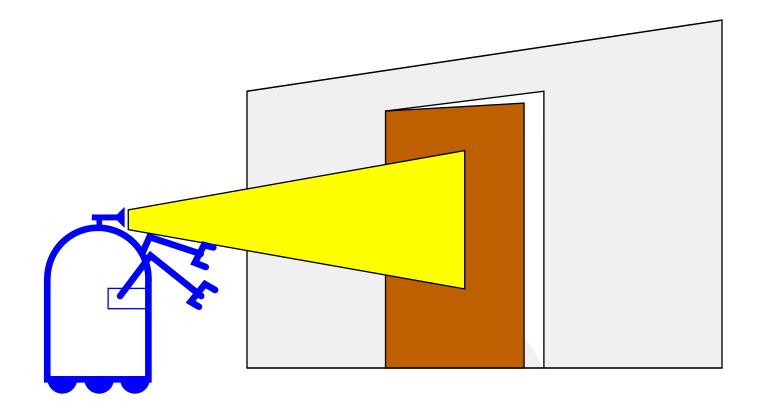
Bayes Formula

P(x, y) = P(x | y)P(y) = P(y | x)P(x)

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P(open/z)?



Causal vs. Diagnostic Reasoning

- P(open/z) is diagnostic.
- P(z/open) is causal.
- Often causal knowledge is easier to obtain.
 Count frequencies!
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Bayes Filters are Familiar!

 $Bel(x_{t}) = \eta (P(z_{t} | x_{t})) (P(x_{t} | u_{t}, x_{t-1})) Bel(x_{t-1}) dx_{t-1}$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks

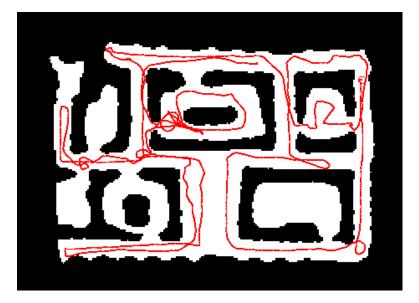
Sensor and Motion Models

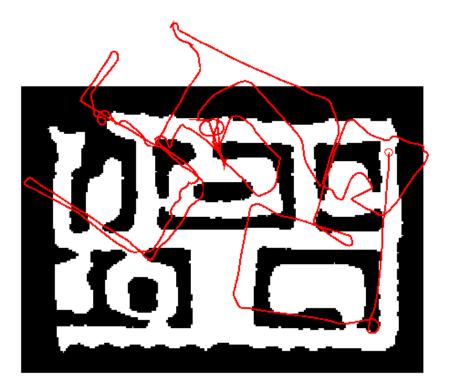
 $P(z \mid x, m)$

 $P(x \mid x', u)$

Motion Models

- Robot motion is inherently uncertain.
- How can we model this uncertainty?





Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model p(x | x', u).
- The term p(x | x', u) specifies a posterior probability, that action u carries the robot from x' to x.

Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based (dead reckoning)
- Odometry-based models are used when systems are equipped with wheel encoders.
- Velocity-based models have to be applied when no wheel encoders are given.
- They calculate the new pose based on the velocities and the time elapsed.

Odometry Model

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

$$\delta_{rot2} = \delta_{rot1}$$

Sensors for Mobile Robots

- Contact sensors: Bumpers
- Internal sensors
 - Accelerometers (spring-mounted masses)
 - Gyroscopes (spinning mass, laser light)
 - Compasses, inclinometers (earth magnetic field, gravity)
- Proximity sensors
 - Sonar (time of flight)
 - Radar (phase and frequency)
 - Laser range-finders (triangulation, tof, phase)
 - Infrared (intensity)
- Visual sensors: Cameras
- Satellite-based sensors: GPS

Beam-based Sensor Model

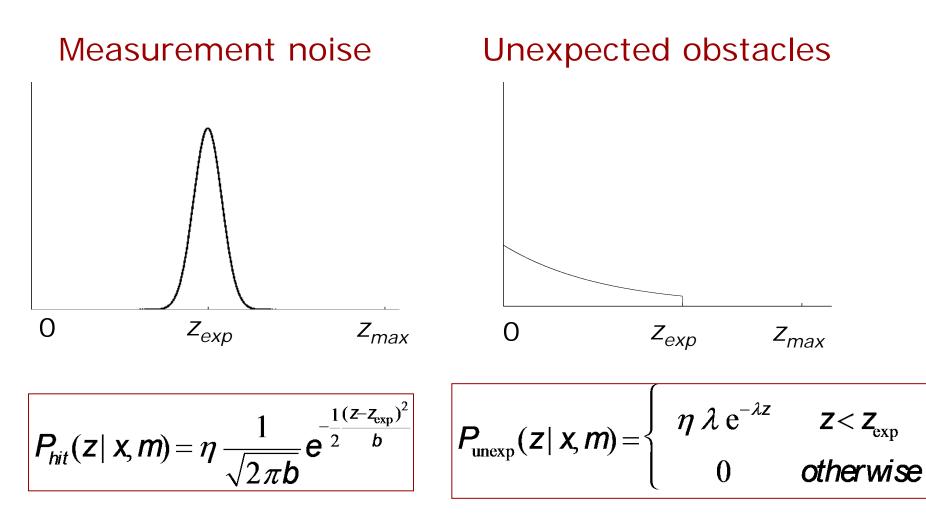
Scan z consists of K measurements.

$$Z = \{Z_1, Z_2, ..., Z_K\}$$

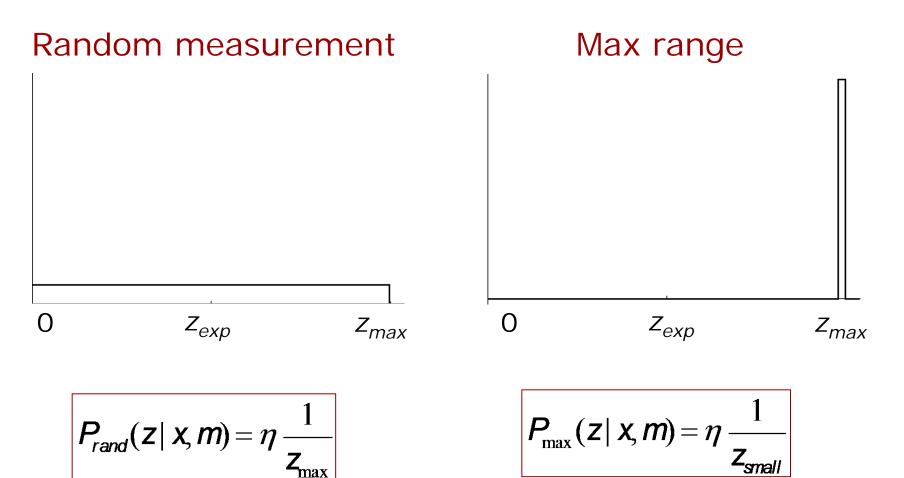
Individual measurements are independent given the robot position.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

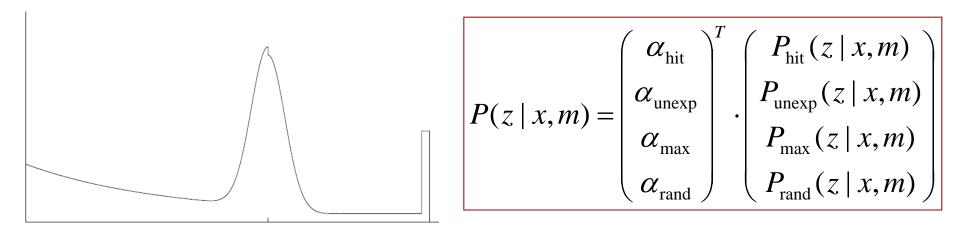
Beam-based Proximity Model



Beam-based Proximity Model



Resulting Mixture Density



How can we determine the model parameters?

Bayes Filter in Robotics

Bayes Filters in Action

- Discrete filters
- Kalman filters
- Particle filters

Discrete Filter

- The belief is typically stored in a histogram / grid representation
- To update the belief upon sensory input and to carry out the normalization one has to iterate over all cells of the grid

Piecewise Constant

▲ Bel(s)		s
P(o s)		
		s •
Bel(s)		
	 cfb	s
[≜] Bel(s)		
00(3)		
	 	s 🕨
		3
P(ols)		S
P(a s)		s s s
P(a s)		s
P(a s)		s

Kalman Filter

- Optimal for linear Gaussian systems!
- Most robotics systems are nonlinear!
- Polynomial in measurement dimensionality k and state dimensionality n:

$$O(k^{2.376} + n^2)$$

Kalman Filter Algorithm

- 1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):
- 2. Prediction:
- **3**. $\overline{\mu}_t = \mathbf{A}_t \mu_{t-1} + \mathbf{B}_t \mathbf{u}_t$
- **4**. $\overline{\Sigma}_t = \mathbf{A}_t \Sigma_{t-1} \mathbf{A}_t^T + \mathbf{Q}_t$
- 5. Correction:
- **6**. $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1}$
- 7. $\mu_t = \overline{\mu}_t + K_t (\mathbf{z}_t \mathbf{C}_t \overline{\mu}_t)$
- $\mathbf{8.} \quad \Sigma_t = (\mathbf{I} \mathbf{K}_t \mathbf{C}_t) \Sigma_t$
- 9. Return μ_t , Σ_t

Extended Kalman Filter

- Approach to handle non-linear models
- Performs a linearization in each step
- Not optimal
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!
- Same complexity than the KF

Particle Filter

- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest
- Particle filters are a way to efficiently represent non-Gaussian distributions

Mathematical Description

Set of weighted samples

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$

State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s^{[i]}}(x)$$

Particle Filter Algorithm in Brief

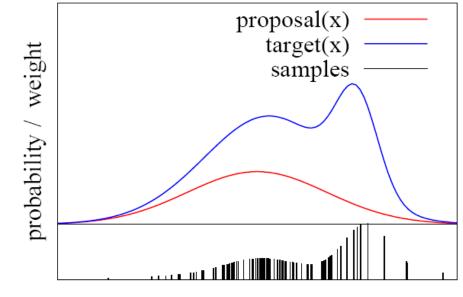
Sample the next generation for particles using the proposal distribution

Compute the importance weights : weight = target distribution / proposal distribution

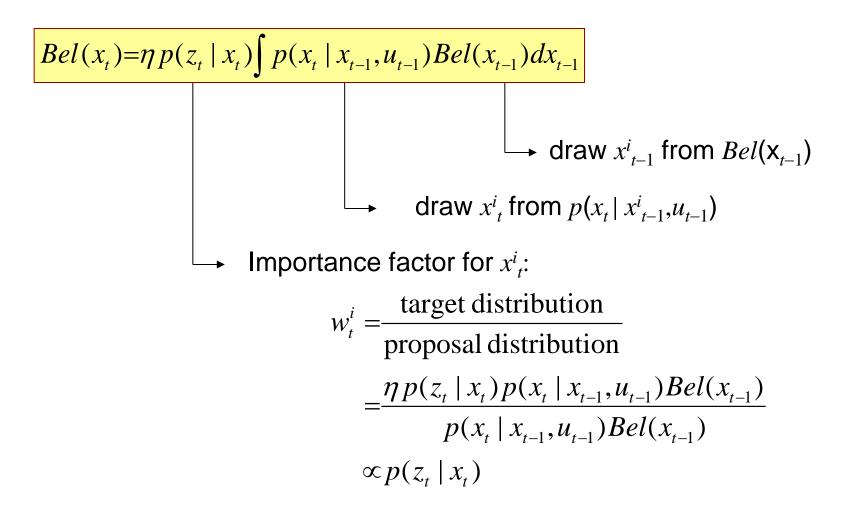
Resampling: "Replace unlikely samples by more likely ones"

Importance Sampling Principle

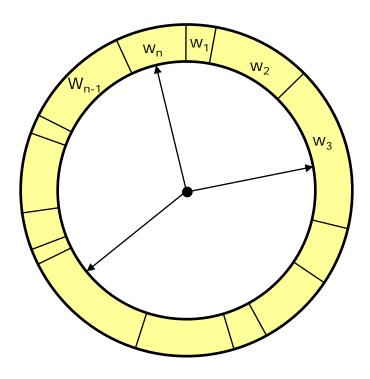
- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f "
- w = f/g
- f is often called target
- g is often called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$



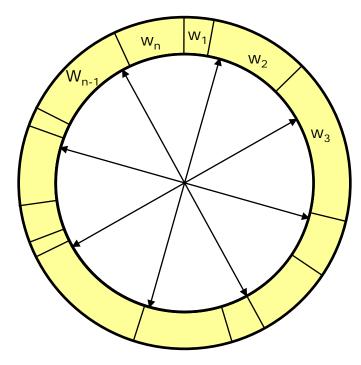
Particle Filter Algorithm



Resampling

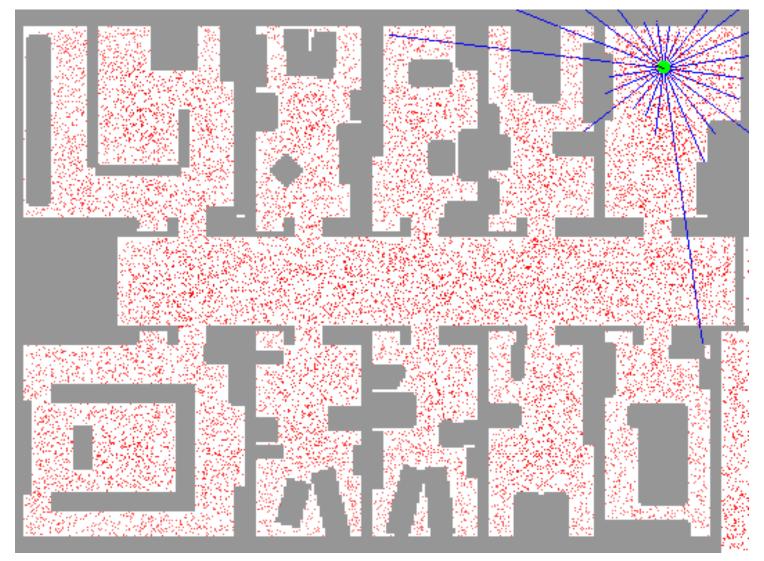


- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

MCL Example



Mapping

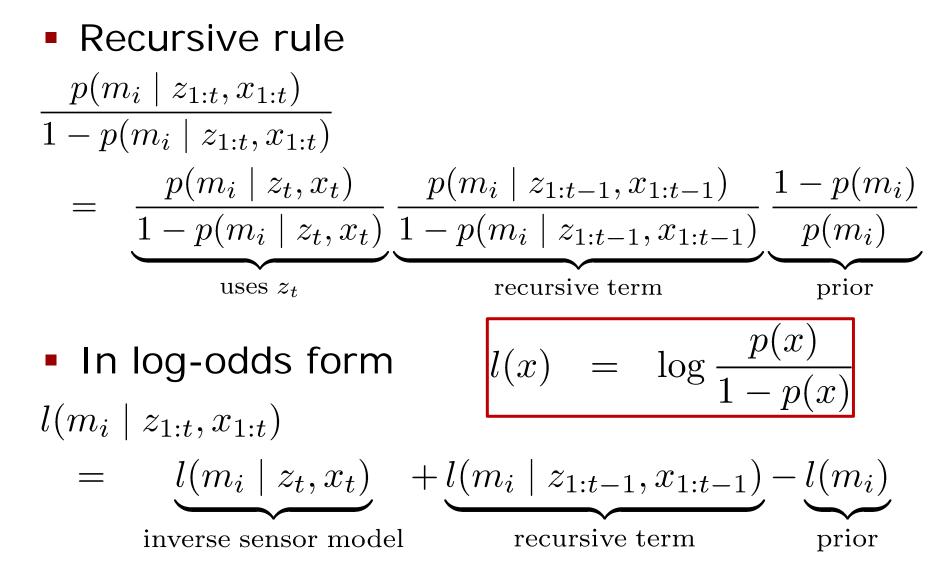
Why Mapping?

- Learning maps is one of the fundamental problems in mobile robotics
- Maps allow robots to efficiently carry out their tasks, allow localization ...
- Successful robot systems rely on maps for localization, path planning, activity planning etc

Occupancy Grid Maps

- Discretize the world into equally spaced cells
- Each cells stores the probability that the corresponding area is occupied by an obstacle
- The cells are assumed to be conditionally independent
- If the pose of the robot is know, mapping is easy

Occupancy Update Rule



Reflection Probability Maps

- Value of interest: P(reflects(x,y))
- For every cell count
 - hits(x,y): number of cases where a beam ended at <x,y>
 - misses(x,y): number of cases where a beam passed through <x,y>

$$Bel(m^{[xy]}) = \frac{hits(x, y)}{hits(x, y) + misses(x, y)}$$

SLAM

The SLAM Problem

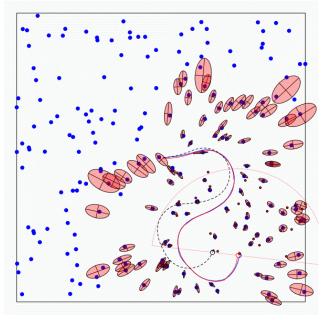
A robot is exploring an unknown, static environment.

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot



Chicken-and-Egg-Problem

- SLAM is a chicken-and-egg problem
 - A map is needed for localizing a robot
 - A good pose estimate is needed to build a map
- Thus, SLAM is regarded as a hard problem in robotics
- A variety of different approaches to address the SLAM problem have been presented
- Probabilistic methods outperform most other techniques

SIMULTING SIMULTING SIMULTING

• Full SLAM: $p(x_{1:t}, m | z_{1:t}, u_{1:t})$

Estimates entire path and map!

• Online SLAM:

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int \int \dots \int p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) dx_1 dx_2 \dots dx_{t-1}$$

Integrations typically done one at a time Estimates most recent pose and map!

Why is SLAM a hard problem?

- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

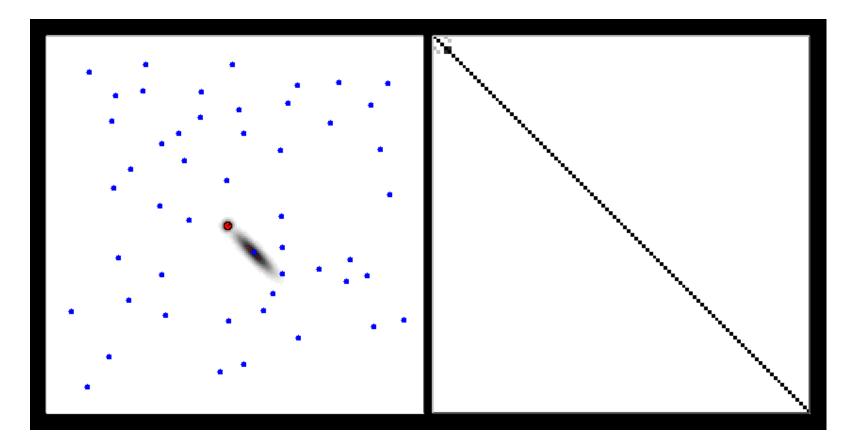
(E)KF-SLAM

 Map with N landmarks: (3+2N)-dimensional Gaussian

$$Bel(x_{t}, m_{t}) = \begin{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \theta \\ l_{1} \\ l_{2} \\ \vdots \\ l_{N} \end{pmatrix}, \begin{pmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{x\theta} \\ \sigma_{xy} & \sigma_{y}^{2} & \sigma_{y\theta} \\ \sigma_{y\theta} & \sigma_{\theta}^{2} & \sigma_{yl_{1}} & \sigma_{yl_{2}} & \cdots & \sigma_{yl_{N}} \\ \sigma_{yl_{1}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \cdots & \sigma_{\theta}^{2} \\ \sigma_{xl_{1}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{1}l_{N}} \\ \sigma_{xl_{2}} & \sigma_{yl_{2}} & \sigma_{\theta}^{2} & \sigma_{\theta}^{2} & \sigma_{l_{1}l_{2}} & \cdots & \sigma_{l_{1}l_{N}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sigma_{xl_{N}} & \sigma_{yl_{N}} & \sigma_{d_{N}} & \sigma_{l_{N}} & \sigma_{l_{1}l_{N}} & \sigma_{l_{2}l_{N}} & \cdots & \sigma_{l_{N}}^{2} \end{pmatrix}$$

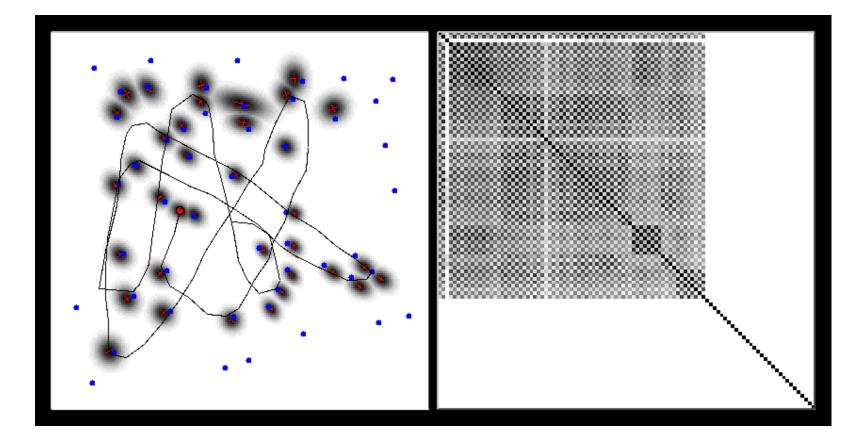
Can handle hundreds of dimensions

EKF-SLAM



Map Correlation matrix

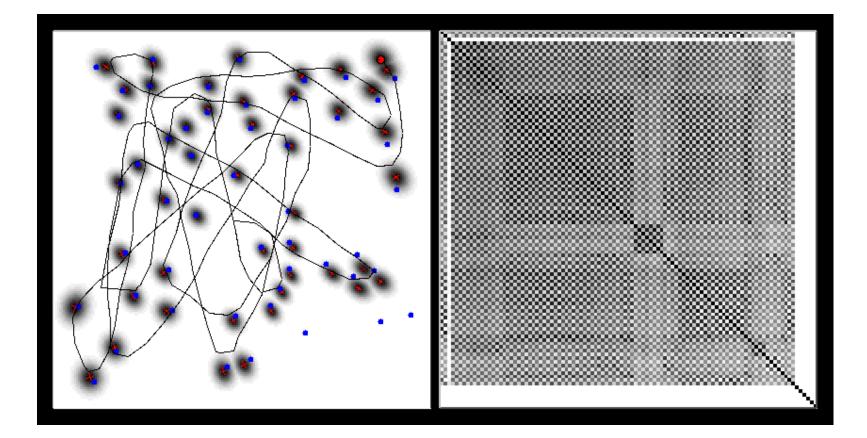
EKF-SLAM



Мар

Correlation matrix

EKF-SLAM

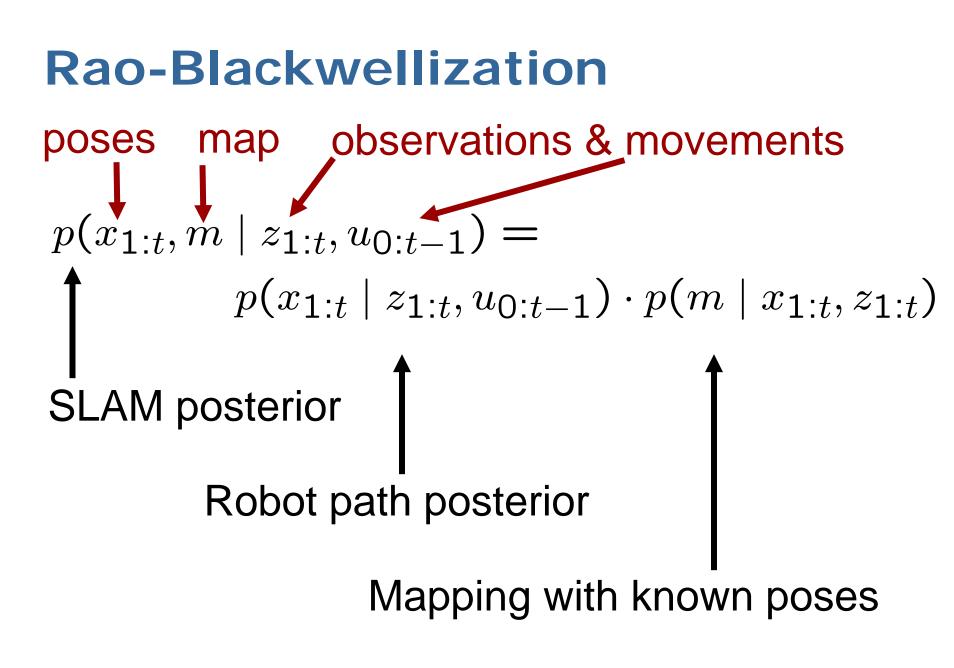


Мар

Correlation matrix

FastSLAM

- Use a particle filter for map learning
- Problem: the map is high-dimensional
- Solution: separate the estimation of the robot's trajectory from the one of the map of the environment
- This is done by means of a factorization in the SLAM posterior often called Rao-Blackwellization



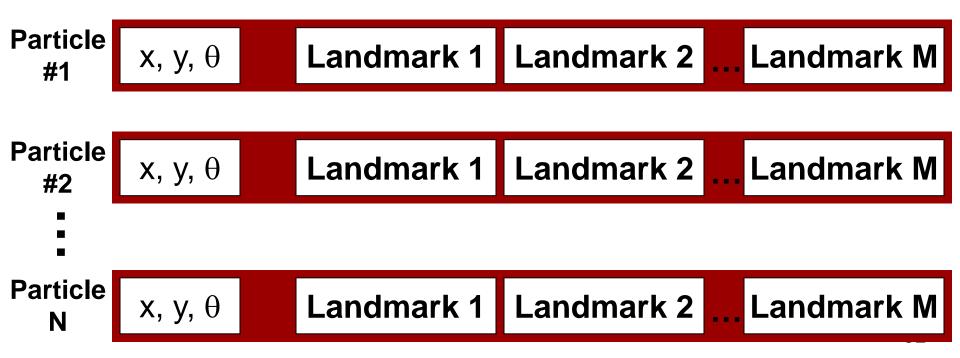
Factorization first introduced by Murphy in 1999

Rao-Blackwellized Mapping

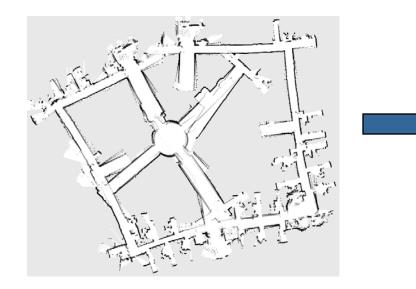
- Each particle represents a possible trajectory of the robot
- Each particle
 - maintains its own map and
 - updates it upon "mapping with known poses"
- Each particle survives with a probability proportional to the likelihood of the observations relative to its own map

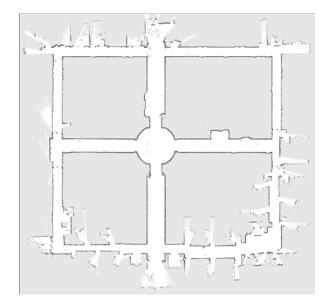
FastSLAM

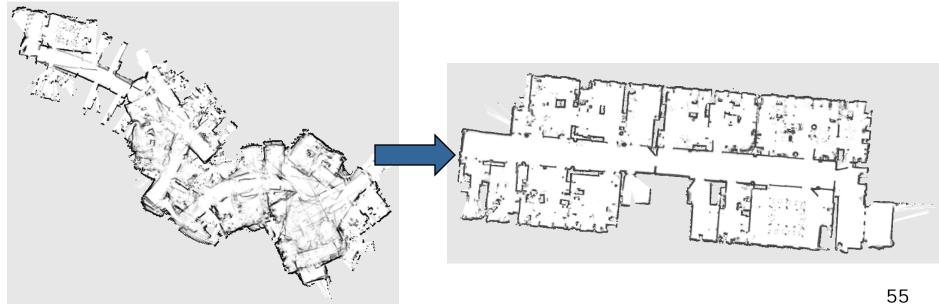
- Rao-Blackwellized particle filtering based on landmarks
- Each landmark is represented by a 2x2 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs



Typical Results







Robot Motion

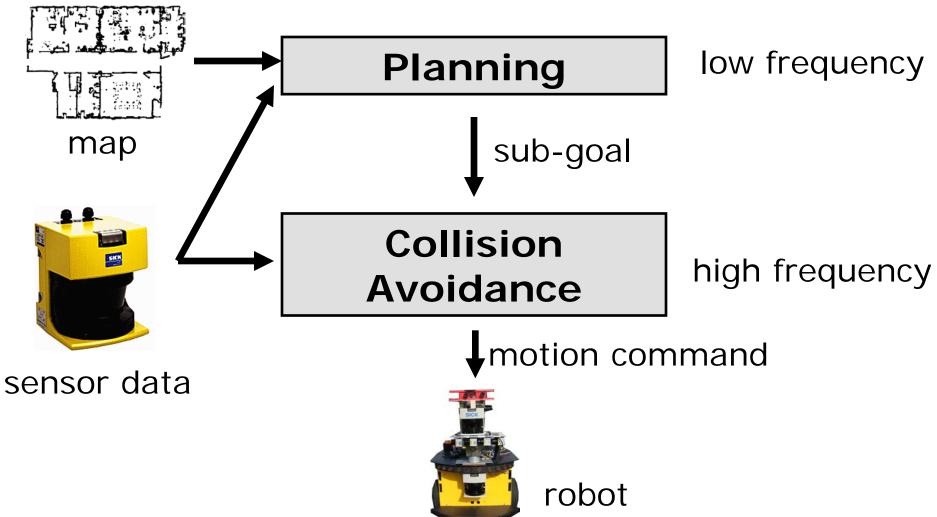
Robot Motion Planning

Latombe (1991): "... eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world."

Goals:

- Collision-free trajectories.
- Robot should reach the goal location as fast as possible.

Classic Two-layered Architecture



Exploration

Multi-Robot Exploration

Given:

- Unknown environment
- Team of robots

Task:

 Coordinate the robots to efficiently learn a complete map of the environment

Complexity:

- NP-hard for single robots in known, graph-like environments
- Exponential in the number of robots

Levels of Coordination

- No exchange of information
- Implicit coordination: Sharing a joint map [Yamauchi et.al, 98]
 - Communication of the individual maps and poses
 - Central mapping system
- Explicit coordination: Determine better target locations to distribute the robots
 - Central planner for target point assignment

Information Gain-based Exploration

- SLAM is typically passive, because it consumes incoming sensor data
- Exploration actively guides the robot to cover the environment with its sensors
- Exploration in combination with SLAM:
 Acting under pose and map uncertainty
- Uncertainty should/needs to be taken into account when selecting an action
- Key question: Where to move next?

Mutual Information

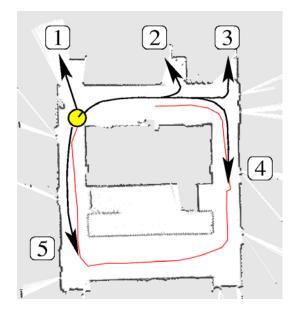
The mutual information I is given by the reduction of entropy in the belief

action to be carried out $I(X,M;Z^{a}) =$ uncertainty of the filter – "uncertainty of the filter after carrying out action a"

Focusing on Specific Actions

To efficiently sample actions we consider

- exploratory actions (1-3)
- Ioop closing actions (4) and
- place revisiting actions (5)



The Exam is Approaching ...

- This lecture gave a short overview over the most important topics addressed in this course
- For the exam, you need to know at least the basic formulas (e.g., Bayes filter, MCL eqs., Rao-Blackwellization, entropy, ...)

Good luck for the exam!