Sheet 6 solutions

July 2, 2020

Exercise 1: Discrete Filter

In this exercise you will be implementing a discrete Bayes filter accounting for the motion of a robot on a 1-D constrained world.

Assume that the robot lives in a world with 20 cells and is positioned on the 10th cell. The world is bounded, so the robot cannot move to outside of the specified area. Assume further that at each time step the robot can execute either a move forward or a move backward command. Unfortunately, the motion of the robot is subject to error, so if the robot executes an action it will sometimes fail. When the robot moves forward we know that the following might happen:

1. With a 25% chance the robot will not move
2. With a 50% chance the robot will move to the next cell
3. With a 25% chance the robot will move two cells forward
4. There is a 0% chance of the robot either moving in the wrong direction or more than two cells forwards

Assume the same model also when moving backward, just in the opposite direction.
Since the robot is living on a bounded world it is constrained by its limits, this changes the motion probabilities on the boundary cells, namely:

1. If the robot is located at the last cell and tries to move forward, it will stay at the same cell with a chance of 100%
2. If the robot is located at the second to last cell and tries to move forward, it will stay at the same cell with a chance of 25%, while it will move to the next cell with a chance of 75%

Again, assume the same model when moving backward, just in the opposite direction.
Implement in Python a discrete Bayes filter and estimate the final belief on the position of the robot after having executed 9 consecutive move forward commands and 3 consecutive move backward commands. Plot the resulting belief on the position of the robot.

Hints: Start from an initial belief of:

$$
\text { bel }=\text { numpy.hstack }((\text { numpy.zeros }(9), 1, \text { numpy.zeros }(10)))
$$

You can check your implementation by noting that the belief needs to sum to one (within a very small error, due to the limited precision of the computer). Be careful about the bounds in the world, those need to be handled ad-hoc.

```
import numpy as np
import matplotlib.pyplot as plt
plt.ion()
def discrete_filter(bel, u):
    """
    Calculate new belief Bel(x).
    Arguments:
    bel -- current belief of robot position x
    u -- move command (action) -l=backward, l=forward
    See lecture on discrete filters slide 4 for details.
    """
    bel_prime = np.zeros(bel.shape[0])
    if u == 1: # move forward
        for x in range(bel.shape[0]):
            if x >= 2:
                bel2 = bel[x - 2]
            else:
                bel2 = 0
            if x >= 1:
                bel1 = bel[x - 1]
            else:
                bell = 0
            bel0 = bel[x]
            if x < bel.shape[0] - 1:
                bel_prime[x] = 0.25 * bel2 + 0.50 * bel1 + 0.25 * bel0
            elif x == bel.shape[0] - 1: # last cell
                bel_prime[x] = 0.25 * bel2 + 0.75 * bel1 + 1.00 * bel0
    if u == -1: # move backward
        for x in range(bel.shape[0]):
            if x < bel.shape[0] - 2:
```

```
        bel2 = bel[x + 2]
        else:
            bel2 = 0
if x < bel.shape[0] - 1:
        bell = bel[x + 1]
else:
        bel1 = 0
bel0 = bel[x]
if x > 0:
        bel_prime[x] = 0.25 * bel2 + 0.50 * bell + 0.25 * bel0
elif x == 0: # first cell
        bel_prime[x] = 0.25 * bel2 + 0.75 * bel1 + 1.00 * bel0
    return bel_prime
```

```
def plot_histogram(bel):
```

def plot_histogram(bel):
plt.cla()
plt.cla()
plt.bar(range(0, bel.shape[0]), bel, width=1.0)
plt.bar(range(0, bel.shape[0]), bel, width=1.0)
plt.axis([0, bel.shape[0], 0, 1])
plt.axis([0, bel.shape[0], 0, 1])
plt.draw()
plt.draw()
plt.pause(1)
plt.pause(1)
def main():
bel = np.hstack((np.zeros(9), 1, np.zeros(10)))
plt.figure()
plt.ion()
plt.show()
for i in range(0, 9):
plot_histogram(bel)
bel = discrete_filter(bel, 1)
print("sum belief", np.sum(bel))
for i in range(0, 3):
plot_histogram(bel)
bel = discrete_filter(bel, -1)
print("sum belief", np.sum(bel))
plt.ioff()
plt.show()
if __name__ == "__main__":
main()

```

\section*{Exercise 2: Particle Filter}

In the following you will implement a complete particle filter. A code skeleton with the particle filter work flow is provided for you. A visualization of the particle filter state is also provided by the framework.
The following folders are contained in the pf_framework.tar.gz tarball:
data This folder contains files representing the world definition and sensor readings used by the filter.
code This folder contains the particle filter framework with stubs for you to complete.

You can run the particle filter in the terminal: python particle_filter.py. It will only work properly once you filled in the blanks in the code.
(a) Complete the code blank in the sample_motion_model function by implementing the odometry motion model and sampling from it. The function samples new particle positions based on the old positions, the odometry measurements \(\delta_{\text {rot } 1}, \delta_{\text {trans }}\) and \(\delta_{\text {rot } 2}\) and the motion noise. The motion noise parameters are:
\(\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]=[0.1,0.1,0.05,0.05]\)
The function returns the new set of parameters, after the motion update.
```

def sample_motion_model(odometry, particles):
\# Samples new particle positions, based on old positions, the odometry
\# measurements and the motion noise
\# (probabilistic motion models slide 27)
delta_rot1 = odometry['r1']
delta_trans = odometry['t']
delta_rot2 = odometry['r2']
\# the motion noise parameters: [alpha1, alpha2, alpha3, alpha4]
noise = [0.1, 0.1, 0.05, 0.05]
\# standard deviations of motion noise
sigma_delta_rot1 = noise[0] * abs(delta_rot1) + noise[1] * delta_trans
sigma_delta_trans = noise[2] * delta_trans + \
noise[3] * (abs(delta_rot1) + abs(delta_rot2))
sigma_delta_rot2 = noise[0] * abs(delta_rot2) + noise[1] * delta_trans
\# "move" each particle according to the odometry measurements plus sampled noise
\# to generate new particle set
new_particles = []
for particle in particles:

```
```

 new_particle = dict()
 # sample noisy motions
 noisy_delta_rot1 = delta_rot1 + np.random.normal(0, sigma_delta_rot1)
 noisy_delta_trans = delta_trans + np.random.normal(0, sigma_delta_trans)
 noisy_delta_rot2 = delta_rot2 + np.random.normal(0, sigma_delta_rot2)
 # calculate new particle pose
 new_particle['x'] = particle['x'] + \
 noisy_delta_trans * np.cos(particle['theta'] + noisy_delta_rot1)
 new_particle['y'] = particle['y'] + \
 noisy_delta_trans * np.sin(particle['theta'] + noisy_delta_rot1)
 new_particle['theta'] = particle['theta'] + \
 noisy_delta_rot1 + noisy_delta_rot2
 new_particles.append(new_particle)
 return new_particles

```
(b) Complete the function eval_sensor_model. This function implements the measurement update step of a particle filter, using a range-only sensor. It takes as input landmarks positions and landmark observations. It returns a list of weights for the particle set. See slide 15 of the particle filter lecture for the definition of the weight \(w\). Instead of computing a probability, it is sufficient to compute the likelihood \(p(z \mid x, l)\). The standard deviation of the Gaussian zero-mean measurement noise is \(\sigma_{r}=0.2\).
```

def eval_sensor_model(sensor_data, particles, landmarks):
\# Computes the observation likelihood of all particles, given the
\# particle and landmark positions and sensor measurements
\# (probabilistic sensor models slide 33)
\#
\# The employed sensor model is range only.
sigma_r = 0.2
\# measured landmark ids and ranges
ids = sensor_data['id']
ranges = sensor_data['range']
weights = []
\# weight each particle
for particle in particles:
all_meas_likelihood = 1.0 \# for combining multiple measurements

```
```

 # loop for each observed landmark
 for i in range(len(ids)):
 lm_id = ids[i]
 meas_range = ranges[i]
 lx = landmarks[lm_id][0]
 ly = landmarks[lm_id][1]
 px = particle['x']
 py = particle['y']
 # calculate expected range measurement
 meas_range_exp = np.sqrt((lx - px) ** 2 + (ly - py) ** 2)
 # evaluate sensor model (probability density function of normal distribution)
 meas_likelihood = scipy.stats.norm.pdf(meas_range, meas_range_exp, sigma_r)
 # combine (independent) measurements
 all_meas_likelihood = all_meas_likelihood * meas_likelihood
 weights.append(all_meas_likelihood)

normalize weights

normalizer = sum(weights)
weights = weights / normalizer
return weights

```
(c) Complete the function resample_particles by implementing stochastic universal sampling. The function takes as an input a set of particles and the corresponding weights, and returns a sampled set of particles.
```

def resample_particles(particles, weights):
\# Returns a new set of particles obtained by performing
\# stochastic universal sampling, according to the particle
\# weights.
new_particles = []
\# distance between pointers
step = 1.0 / len(particles)
\# random start of first pointer
u = np.random.uniform(0, step)
\# where we are along the weights
c = weights[0]

```
```


index of weight container and corresponding particle

i = 0
new_particles = []

loop over all particle weights

for particle in particles:
\# go through the weights until you find the particle
\# to which the pointer points
while u > c:
i = i + 1
c = c + weights[i]
\# add that particle
new_particles.append(particles[i])
\# increase the threshold
u = u + step
return new_particles

```
```

