Introduction to Mobile Robotics

Welcome

Wolfram Burgard

Today

- This course
- Robotics in the past and today

Organization

- Self Study lecture recordings, no on-site lectures
- Tue 13:00 14:00
 Q&A session, discussions
- Thu 13:00 14:30
 homework, practical exercises (Python)
- Web page: <u>http://ais.informatik.uni-freiburg.de/</u>
- Exam: Oral or written

People

- Teaching:
- Wolfram Burgard

Teaching assistants:

- Daniel Büscher
- Lukas Luft
- Johannes Meyer
- Shengchao Yan

Goal of this course

- Provide an overview of problems and approaches in mobile robotics
- Probabilistic reasoning: Dealing with noisy data
- Hands-on experience

Content of this Course

- 1. Linear Algebra
- 2. Wheeled Locomotion
- 3. Sensors
- 4. Probabilities and Bayes
- 5. Probabilistic Motion Models
- 6. Probabilistic Sensor Models
- 7. Mapping with Known Poses
- 8. The Kalman Filter
- 9. The Extended Kalman Filter
- 10.Discrete Filters
- 11. The Particle Filter, MCL

- 12. SLAM: Simultaneous Localization and Mapping
- 13. SLAM: Landmark-based FastSLAM
- 14. SLAM: Grid-based FastSLAM
- 15. SLAM: Graph-based SLAM
- **16**. Techniques for 3D Mapping
- 17. Iterative Closest Points Algorithm
- 18. Path Planning and Collision Avoidance
- **19**. Multi-Robot Exploration
- 20. Information-Driven Exploration
- 21. Summary

Reference Book

Thrun, Burgard, and Fox: "Probabilistic Robotics"

Relevant other Courses

- Foundations of Artificial Intelligence
- Computer Vision
- Machine Learning
- and many others from the area of cognitive technical systems.

Opportunities

- Projects
- Practical courses
- Seminars
- Theses
- ... your future!

Autonomous Robot Systems

- perceive their environment and
- generate actions to achieve their goals.

Tasks Addressed that Need to be Solved by Robots

- Navigation
- Perception
- Learning
- Cooperation
- Acting
- Interaction
- Robot development
- Manipulation
- Grasping
- Planning

. . .

Reasoning

Robotics Yesterday

- Highly repeatable tasks
- Robots bolted to the ground, often caged
- Limited to no perception
- Very little "AI"

Picture: Bachmann, Kuka Roboter GmbH

Current Trends in Robotics

Robots are (partly) moving away from factory floors ...

- Entertainment, toys
- Personal services
- Medical, surgery
- Industrial automation
- Hazardous environments (mining, harvesting, space, underwater)
- Self-driving cars

Shakey the Robot (1966)

Shakey the Robot (1966)

The Helpmate System

Autonomous Vacuum Cleaners

Autonomous Lawn Mowers

DARPA Grand Challenge

[Courtesy by Sebastian Thrun]

Walking Robots

[Courtesy by Boston Dynamics]

Driving in the Waymo Car

JJ Ricks in the Waymo Car #47

Folding Towels

Cloth Grasp Point Detection based on Multiple-View Geometric Cues with Application to Robotic Towel Folding

> Jeremy Maitin-Shepard Marco Cusumano-Towner Jinna Lei Pieter Abbeel

Department of Electrical Engineering and Computer Science University of California, Berkeley

International Conference on Robotics and Automation, 2010

Rhino (Univ. Bonn + CMU, 1997)

Minerva (CMU + Univ. Bonn, 1998)

Robotics in Freiburg

Autonomous Parking

Autonomous Quadrotor Navigation

Custom-built system: laser range finder inertial measurement unit embedded CPU laser mirror

Precise Localization and Positioning for Mobile Robots

Obelix – A Robot Traveling to Downtown Freiburg

The Obelix Challenge (Aug 21, 2012)

The Tagesthemen-Report

Brain-controlled Robots

Teaching: Student Project on the Autonomous Portrait Robot

Final Result

Other Cool Stuff from AIS

Accurate Localization

- KUKA omniMove (11t)
- Safety scanners
- Error in the area of millimeters
- Even in dynamic environments

26 Units installed at Boeing

- Fuselage assembly
- 20 vehicles to transport industrial robots for drilling and filling of 60,000 fasteners in
- 6 vehicles for logistics of parts, work stands and fuselages

Accurate Indoor RGB-D Localization with a Google Tango Device based on 2D Floor Plans

Wera Winterhalter, Freya Fleckenstein, Bastian Steder, Wolfram Burgard, Luciano Spinello

Learning User Preferences

- Task preferences are subjective
- Fixed rules do not match all users
- Constantly querying humans is suboptimal
- How to handle new objects?

Collaborative Filtering

Collaborative Filtering

Online Prediction of Preferences

Deep Learning Applications

RGB-D

Images

Sound

DCN for Object Recognition

- Fusion layers automatically learn to combine feature responses of the two network streams
- During training, weights in first layers stay fixed

Learning Results

•[Lai et. al, 2011]

•Category-Level Recognition [%] (51 categories)

Method	RGB	Depth	RGB-D
CNN-RNN	80.8	78.9	86.8
HMP	82.4	81.2	87.5
CaRFs	N/A	N/A	88.1
CNN Features	83.1	N/A	89.4
This work, Fus-CNN	84.1	83.8	91.3

Network Architecture

- Fully convolutional network
 - Contraction and expansion of network input
 - Up-convolution operation for expansion
- Pixel input, pixel output

Deep Learning for Body Part Segmentation

•Input Image	•Grou	und Tru	th •S	Segmer mas	itation k
Method	Head	Torso	Arms	Legs	IOU
FCN	52.71	62.49	35.04	43.25	43.20

 $79.45 \quad 63.93$

64.91

71.99

80.56

Ours

Deep Learning for Terrain Classification using Sound

Network Architecture

- Novel architecture designed for unstructured sound data
- Global pooling gathers statistics of learned features across time

Data Collection

Results - Baseline Comparison

Features	SVM Linear	SVM RBF	window) k-NN
Ginna [1] Spectral [2]	44.87 ± 0.70 84.48 ± 0.36	37.51 ± 0.74 78.65 ± 0.45	57.26 ± 0.60 76.02 ± 0.43
Ginna & Shape [3]	85.50 ± 0.34	80.37 ± 0.55	70.02 ± 0.43 78.17 ± 0.37
MFCC & Chroma L4J Trimbral [5]	88.95 ± 0.21 89.07 ± 0.12	88.55 ± 0.20 86.74 ± 0.25	88.43 ± 0.15 84.82 ± 0.54
Cepstral [6]	89.93 ± 0.21	78.93 ± 0.62	88.63 ± 0.06

90.99/8/dmpinggen5@00nos/evitble vprevious state of the art

[1] T. Giannakopoulos, K. Dimitrios, A. Andreas, and T. Sergios, SETN 2006

[2] M. C. Wellman, N. Srour, and D. B. Hillis, SPIE 1997.

[3] J. Libby and A. Stentz, ICRA 2012

[4] D. Ellis, ISMIR 2007

[5] G. Tzanetakis and P. Cook, IEEE TASLP 2002

[6] V. Brijesh , and M. Blumenstein, Pattern Recognition Technologies and Applications 2008

... and enjoy the course!