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Probabilistic Robotics
Key idea:

Explicit representation of uncertainty
(using the calculus of probability theory)

= Perception = state estimation
= Action = utility optimization



Axioms of Probability Theory

P(A) denotes probability that proposition A is true.

" 0=PA)=l1
= P(True)=1 P(False)=0

« P(AvB)=P(A)+P(B)-P(AAB)



A Closer Look at Axiom 3

P(Av B)=P(A)+P(B)-P(A A B)

True
A ANB B




Using the Axioms

P(Av-A) = P(A)+P(-A)-P(AA-A)
P(True) = P(A)+P(-A)-P(False)
1 = P(A)+P(-A)-0

P(-A) = 1-P(A)



Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
N {x;, Xy, ..., X,}

= P(X=x;) or P(x,) is the probability that the
random variable X takes on value x;

= P(+)is called probability mass function

* E.g. P(Room)= <O.7,0.2,0.08,().02>



Continuous Random Variables

= X takes on values in the continuum.
= p(X=x) or p(x) is a probability density

function

= E.qg.

P(x Ela,b]) = fp(x)dx

p(x)

TN




“Probability Sums up to One”

Discrete case Continuous case

Ep(x) =1 f p(x)dx =1



Joint and Conditional Probability

" P(X=xand Y=y) = P(x,))

= If X and Y are independent then
P(x,y) = P(x) P(y)

= P(x|y)is the probability of x given y
P(x | y) = P(x,y)/ P(y)
Pxy) =Px|[y)PQy)

= If X and Y are independent then
P(x | y) = P(x)



Law of Total Probability

Discrete case Continuous case

P(x)= Y P(xIy)P(y)  p(x)= [ p(x1y)p(y)dy
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Marginalization

Discrete case

P(x)=) P(x,)

Continuous case

p(x)= [ p(x,y) dy
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Bayes Formula

P(x,y)=P(x1y)P(y)=P(ylx)P(x)

=

P(ylx) P(x) likelihood - prior

P(x|y) =
( ‘y) P(y) evidence




Normalization

_P(ylx) P(x)
P(x|y)= PO} n P(y1x)P(x)
| 1
— P(v) ! =
1 S RGP
Algorithm: ’

Vx:aux,, =P(ylx) P(x)
1

"7 Saux,

X

Vx:P(xly)=naux,
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Bayes Rule
with Background Knowledge

P(ylx,z) P(x|z)
P(ylz)

P(xly,z)=
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Conditional Independence
P(x,y|z)=P(x|z)P(y| z)
= Equivalent to P(X‘Z)IP(X‘Z,)/)
and P(y|z)=P(y|z,x)

= But this does not necessarily mean

P(x,y)=P(x)P(y)

(independence/marginal independence)
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Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open | z)?

S
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Causal vs. Diagnostic Reasoning

= P(open|z) is diagnostic
= P(z|open) iS causal

= In some situatians, causal knowledge

is easier to obtain count frequencies!

= Bayes rule allows us to us& causal
knowledge:

P(z | open)P(open)
P(z)

P(open | z) =
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Example

" P(z|lopen) = 0.6 P(z|—open) = 0.3
" P(open) = P(—open) = 0.5

P(z | open)P(open)
P(z|open) p(open)+ P(z | —open) p(—open)
0.6-0.5 03
0.6-0.5+0.3-0.5 0.3+0.15

P(open|z) =

=0.67

P(open | z) =

= 7 raises the probability that the door is open
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Combining Evidence

= Suppose our robot obtains another
observation z,

= How can we integrate this new information?

= More generally, how can we estimate
P(x | Z]y euny Zn)?
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Recursive Bayesian Updating

P(Zn | x,Zl,...,Zn—l) P(X | Zl,...,Zn—l)
P(znlzi,....z0-1)

Pxlz,...,z0)=

Markov assumption:

z, IS independent of z,,...,z_; if we know x

P(anX) P(XlZl,...,Zn—l)
P(znlz1,...,20-1)

—nP(znlx) P(x|z1 o Zn-1)

P(x | Zl,...,Zn) =

= | | | Pl | P(x)

Li=1...n
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Example: Second Measurement

" P(z;lopen) = 0.25 P(z,|—open) = 0.3
" P(open|z;)=2/3

P(z, lopen) P(openlz,)
P(z, lopen) P(openlz,)+ P(z, | ~open) P(—open| z,)

P(openlz,,z,) =

12 [
_ 43 6 _ 6 _3_
"T2 31 T, 14 g 0
4 3 10 3 6 10 15

* z, lowers the probability that the door is open
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Actions

= Often the world is dynamic since
= actions carried out by the robot,
= actions carried out by other agents,
= or just the time passing by
change the world

= How can we incorporate such actions?
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Typical Actions

= The robot turns its wheels to move

= The robot uses its manipulator to grasp
an object

= Plants grow over time ...

= Actions are never carried out with
absolute certainty

= In contrast to measurements, actions
generally increase the uncertainty
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Modeling Actions

= To incorporate the outcome of an
action u into the current “belief”, we
use the conditional pdf

P(x | u, x°)

= This term specifies the pdf that
executing u changes the state
from x’ to x.
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Example: Closing the door

-

26



State Transitions

P(x |u, x’) for u = “close door™:

0.9 ™4
"\ 0

If the door is open, the action “close door”
succeeds in 90% of all cases
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Integrating the Outcome of Actions

Continuous case:
P(xlu)= f P(xlu,x)P(x'19)dx

Discrete case:

P(xlu)= EP(x lu, x")P(x'198)

We will make an independence assumption to
get rid of the u in the second factor in the

sum.
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Example: The Resulting Belief
P(closed | u) = EP(closed lu, x"YP(x")

= P(closed |u,open)P(open)
+ P(closed | u,closed)P(closed)

9 5 1 3 15
__+___

10 8 1 8 16
P(openlu) = EP(open lu, x")P(x")

= P(open | u,open)P(open)
+ P(openlu,closed)P(closed)
I 5 0 3 1

= % _ 4 % =

10 8 1 8 16
=1- P(closed | u)

29



Bayes Filters: Framework

= Given:
= Stream of observations z and action data u:

dl‘ = {u1,Z19 °°'9ut9zt}

= Sensor model P(z | x)
= Action model P(x | u, x°)
= Prior probability of the system state P(x)

= Wanted:
= Estimate of the state X of a dynamical system

= The posterior of the state is also called Belief:

Bel(xt) = P('xt |ulazla °°°autaz;)
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Markov Assumption

P(z, 1 xo,,2, 1) = P(z,1x,)

P(x, 1 x5 2,u,) = P(x, 1x,_,u,)

Underlying Assumptions

= Static world

= Independent noise

= Perfect model, no approximation errors
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observation

Bayes Filters ¢ e
Bel(x,)|= P(x, lu,,z, ...,u,,z,)
Bayes =n P(z, | x,,u,z,....,u,) P(x, lu,z,...,u,)
Markov =1 P(z, Ix,) P(x, lu,z,...,u,)
otatprob. =11 P(z, 1) [ P(x, 11,2, ...1,,%,,)
P(x_ lu,z,...,u)dx,_,
Markov =1 P(z,|x,) f P(x lu,x,_)P(x_ lu,z,...,u)dx,_
Markov =nP(z, |x,) f P(x lu,x,_)P(x,_lu,z,...,z,_,)dx,_

=nP(z, 1x,) f P(x, lu,x, ) Bel(x,)dx_,
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Bel(x,)=nP(z, | x,) I P(x, |u,,x,_)Bel(x,_ )dx,_,

Algorithm Bayes_filter(Bel(x), d):
n=0
If d is a perceptual data item z then
For all x do
Bel'(x)= P(z|x)Bel(x)
N =1+ Bel'(x)
For all x do
Bel'(x)=n"Bel'(x)

Else if d is an action data item « then

O O NOU R WM

For all x do
Bel'(x) = fP(x lu,x") Bel(x") dx'

Return Bel '(x)

— =
= O

=
N
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Bayes Filters are Familiar!

Bel(x,)=nP(z, | x,) I P(x, |u,,x,_)Bel(x,_)dx,

= Kalman filters

= Particle filters

= Hidden Markov models

= Dynamic Bayesian networks

= Partially Observable Markov Decision
Processes (POMDPs)
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Probabilistic Localization




Probabilistic Localization

p(x | u,z") Bel(z')dx'

/

T

ap(z|x)

Bel(x | z,u)

gz
| = - |

—‘L_—— R ————




Summary

= Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

= Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

= Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.
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