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Motivation

= Recall: Discrete filter
= Discretize the continuous state space
= High memory complexity
= Fixed resolution (does not adapt to the belief)

= Particle filters are a way to efficiently represent
non-Gaussian distribution

= Basic principle
= Set of state hypotheses (“particles™)
= Survival-of-the-fittest



Sample-based Localization (sonar)




Mathematical Description

= Set of weighted samples
S = {<s[i],w[i]> |1 = 1,...,N}

[

State hypothesis Importance weight

= The samples represent the posterior

N
p(z) = ) w;-d ()

1=1



Function Approximation

= Particle sets can be used to approximate functions

f(x)
samples

f(x)
samples

probability / weight
probability / weight
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= The more particles fall into an interval, the higher
the probability of that interval

= How to draw samples from a function/distribution? 5



Bayes filter with particle sets

= Measurement update

bel(x) < p(z|x)bel(x)
= p(zl0) ) wi (0 = ) p(z]s) wi 8,0 ()

= Motion update

W(x)EJp(xlu,x‘) bel(x™)dx~

= fp(xlu,x‘)Zwi 6 i (x™)dx™ =Zp(x‘u,s[i]) w;
i i



Rejection Sampling

Let us assume that f(x)< a for all x
Sample x from a uniform distribution

Sample ¢ from [0,a]

= if fix) >c keep the sample
otherwise reject the sample
f(x)
%0 samples
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Importance Sampling Principle

We can even use a different distribution ¢ to
generate samples from f

By introducing an importance weight w, we can
account for the “differences between g and '~

w=f/g

proposal(x)
target(x)
samples

fis called target

¢ is called proposal
Pre-condition:
J(x)>0 2 g(x)>0
Derivation: See

probability / weight
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Importance Sampling with
Resampling

Weighted samples After resampling



Particle Filters
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Sensor Information: Importance Sampling

a p(z|x)

a p(z|x)Bel (x)
Bel (x)

e

Bel(x) <« «a p(z|x)Bel (x)

w

p(s)

4 0(T)

p(z | 2)

p(z | z)
{ Pio|s)

Xz

T ple)



Robot Motion

Bel"(x) <«

| p(x|ux')Bel(x') dx'




Sensor Information: Importance Sampling
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Robot Motion

| p(x|ux')Bel(x') dx'
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Particle Filter Algorithm

= Sample the next generation for particles using the
proposal distribution

= Compute the importance weights :
weight = target distribution / proposal distribution

= Resampling: “Replace unlikely samples by more
likely ones”
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Particle Filter Algorithm

1. Algorithm particle_filter( S, ;, u,, z,):

2. § =0, n=0

3. Forj=1[ ,n Generate new samples

4 Sample index j(i) from the discrete distribution given by w, ,
5. Sample X, from p(x, | x, ,u,) using X/’ and y,

6 w,=p(z|x) Compute importance weight
7e n=n+w, Update normalization factor
8. S=Su{<x,w >} Add to new particle set

9. For j=1[ ,n

10. W,=w,/n Normalize weights

21




Particle Filter Algorithm

Bel(x) = 7 p(z | X) | (x| X..t) Bel(x,,) dx,

draw x’_, from Bel(x, ;)

— draw x/, from p(x,| x',_,,u,)

— Importance factor for x’:

‘N;:

target distribution

proposal distribution

_n p(z | x) p(x | x._,u) Bel (X))
p(x; | X, U;) Bel (X))

o« P(Z | X;)




Resampling

= Given: Set S of weighted samples.

= Wanted : Random sample, where the
probability of drawing Xx; is given by w;.

= Typically done n times with replacement to
generate new sample set S”.



Resampling

= Stochastic universal sampling
= Roulette wheel = Systematic resampling
= Binary search, n log n = Linear time complexity
= Easy to implement, low variance



Resampling Algorithm

1. Algorithm systematic_resampling(S,n):

2. §'=G,c,=w'

3. For i=2...n Generate cdf

4. c,=¢C, |+ W

5. u,~UJ0,n"'],i=1 Initialize threshold

6. For j=1...n Draw samples ...

7. While (u; >¢;) Skip until next threshold reached
8. i=i+1

0. S'= S'u{< x',n >} Insert

10.  wu, =u,+n" Increment threshold

11. Return S~

Also called stochastic universal sampling



Mobile Robot Localization

« Each particle is a potential pose of the robot

» Proposal distribution is the motion model of
the robot (prediction step)

« The observation model is used to compute
the importance weight (correction step)

[ For details, see PDF file on the lecture web page]
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Motion Model Reminder

end pose

start pose @

According to the estimated motion



Motion Model Reminder
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» Decompose the motion into
« Traveled distance
= Start rotation
« End rotation



Motion Model Reminder

» Uncertainty in the translation of the robot:
Gaussian over the traveled distance

« Uncertainty in the rotation of the robot:
Gaussians over start and end rotation

« For each particle, draw a new pose by sampling
from these three individual normal distributions




Motion Model Reminder
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Mobile Robot Localization Using
Particle Filters (1)

« Each particle is a potential pose of the robot

« The set of weighted particles approximates
the posterior belief about the robot’s pose
(target distribution)
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Mobile Robot Localization Using
Particle Filters (2)

= Particles are drawn from the motion model
(proposal distribution)

« Particles are weighted according to the
observation model (sensor model)

= Particles are resampled according to the
particle weights
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Mobile Robot Localization Using
Particle Filters (3)

Why is resampling needed?
« We only have a finite number of particles

« Without resampling: The filter is likely to
loose track of the “"good” hypotheses

« Resampling ensures that particles stay in
the meaningful area of the state space
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Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten
Ultrasound Scans
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After Incorporating 65 Ultrasound
Scans
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Using Ceiling Maps for Localization

[Dellaert et al. 99]



Vision-based Localization

P(z[x)

=

00000(g




Under a Light

Measurement z: P(z|x):
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Next to a Light

Measurement z: P(z|x):




Elsewhere

Measurement z: P(z|x):




Global Localization Using Vision




iIsion-based Localization




Limitations

» The approach described so far is able
= to track the pose of a mobile robot and
= to globally localize the robot

= How can we deal with localization errors
(i.e., the kidnapped robot problem)?
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Approaches

« Randomly insert a fixed number of
samples with randomly chosen poses

= This corresponds to the assumption that
the robot can be teleported at any point in
time to an arbitrary location

« Alternatively, insert such samples inverse
proportional to the average likelihood of
the observations (the lower this likelihood
the higher the probability that the current
estimate is wrong).
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Summary - Particle Filters

= Particle filters are an implementation of
recursive Bayesian filtering

« They represent the posterior by a set of
weighted samples

 They can model arbitrary and thus also
non-Gaussian distributions

= Proposal to draw new samples

« Weights are computed to account for the
difference between the proposal and the
target

= Monte Carlo filter, Survival of the fittest,
Condensation, Bootstrap filter
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Summary - PF Localization

« In the context of localization, the particles
are propagated according to the motion
model.

» They are then weighted according to the
likelihood model (likelihood of the
observations).

» In a re-sampling step, new particles are
drawn with a probability proportional to the
likelihood of the observation.

« This leads to one of the most popular
approaches to mobile robot localization
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