
Exercise 7 solutions

June 29, 2023

Exercise 1: Theoretical Considerations

The EKF is an implementation of the Bayes Filter.

(a) The Bayes filter processes three probability density functions, i. e.,
p(xt | ut, xt−1), p(zt | xt), and bel(xt). State the normal distributions of the EKF
which correspond to these probabilities.

The assumption of the Kalman and Extended Kalman Filter is that the three stated
probability density functions are normal, i.e., they are of the form:

p(x) =
1√

(2π)n detΣ
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
Where n is the size of the random vector x, µ is the mean of x, and Σ is its
covariance matrix (an n× n symmetric positive definite matrix).

For the EKF we thus have that:

• p(xt | ut, xt−1) = g(ut, xt−1) + ϵt is the distribution that predicts the next
state from the previous one and from the control vector. If ϵt = N (ϵt; 0, Qt)
is zero-mean normally distributed, the distribution becomes p(xt | ut, xt−1) =
N (xt; g(ut, xt−1), Qt).

• p(zt | xt) = h(xt) + δt is the distribution that predicts the measurement from
the current state. If δt = N (ϵt; 0, Rt) is zero-mean normally distributed, it
becomes p(zt | xt) = N (zt;h(xt), Rt).

• bel(xt) = N (xt;µt,Σt) is the current estimate of the distribution of the state.
Mean and covariance are given by the Kalman filter correction formulas.

Take heed of the fact that, formally speaking, p(xt | ut, xt−1) and p(zt | xt) are
Gaussian in xt only when g(ut, µt−1) and h(µt) are linear in xt (technically, affine,
as they may include a shift factor). In reality, this is often not the case, and as a
consequence the EKF is only able to do approximate inference.

(b) Explain in a few sentences all of the components of the EKF, i. e., µt, Σt, g, Gt, h,
Ht, Qt, Rt, Kt and why they are needed. What are the differences and similarities
between the KF and the EKF?

1

The Extended Kalman filter depends on the definition of the following components:

g(u, x) : This function estimates the current state xt from the control and the previ-
ous state variables. In mobile robotics applications this function often defines
the motion model of the system.

Gt : The Jacobian matrix of g evaluated at the previous estimate of the state,
namely:

Gt =
∂g

∂x

∣∣∣∣
x=µt−1

This matrix corresponds to At in a standard Kalman filter and accounts for the
linearization approximation of the EKF.

Qt : This is the covariance matrix (assumed to be known) of the zero-mean Gaus-
sian error that corrupts the prediction of the state, i.e., the present state vari-
ables are given by the prediction of the function g plus some noise. This is
necessary as in reality every prediction model is subject to some additional
noise (e.g., imperfections in the terrain, wheel slippage, etc.).

h(x) : This function estimates the measurement zt from the current state variables.
In mobile robotics applications this function defines the measurement model
of the system, such as range and bearing of a landmark.

Ht : The Jacobian matrix of h evaluated at the current estimate of the state from
prediction only, namely:

Ht =
∂h

∂x

∣∣∣∣
x=µ̄t

This matrix corresponds to Ct in a standard Kalman filter and accounts for the
linearization approximation of the EKF.

Rt : This is the covariance matrix (assumed to be known) of the zero-mean Gaus-
sian error that corrupts the measurements, i.e., the measurement is given by
the function h plus some noise. This is necessary as any measurement is sub-
ject to some noise (e.g., accuracy of the sensor, systematic errors, etc.).

µt : This is the estimate for the mean of the distribution of the state at time t
computed by the EKF. If g and h are linear and all of the additional noises are
normally distributed it has been proven that the (Extended) Kalman filter will
provide the optimal estimate of the mean in least squares terms.

Σt : This is the estimate for the covariance matrix of the distribution of the state at
time t computed by the EKF. As for the mean, this is optimal under linearity
assumptions.

The main difference between the Extended Kalman filter and the Kalman filter is
that the latter deals only with linear models, and in doing so it provides an optimal
estimate. The EKF on the other hand, is able to deal with nonlinear models by
linearizing, at the cost of not being optimal. In terms of formulas, the difference is
the following:

2

Kalman filter Extended Kalman filter

Prediction
1. µ̄t = At µt−1 +Bt ut µ̄t = g(ut, µt−1)

2. Σ̄t = AtΣt−1A
T
t +Qt Σ̄t = GtΣt−1G

T
t +Qt

Correction

3. Kt = Σ̄t C
T
t

(
Ct Σ̄tC

T
t +Rt

)−1
Kt = Σ̄t H

T
t

(
Ht Σ̄tH

T
t +Rt

)−1

4. µt = µ̄t +Kt (zt − Ct µ̄t) µt = µ̄t +Kt (zt − h(µ̄t))

5. Σt = (I −KtCt) Σ̄t Σt = (I −Kt Ht) Σ̄t

Notice that the only real differences are in replacing 1. and 4. with their nonlinear
counterparts, and in replacing At and Ct with the Jacobians of g and h (resp. Gt and
Ht).

Exercise 2: EKF Prediction Step

We assume a differential drive robot operating on a 2-dimensional plane, i.e., its state
is defined by ⟨x, y, θ⟩. Its motion model is defined on slide 10 (Odometry Model) in the
chapter Probabilistic Motion Models of the lecture slides.

(a) Derive the Jacobian matrix Gt of the noise-free motion function g. Do not use
Python.

Let us refer to st = ⟨xt, yt, θt⟩ as the state variables in order to avoid ambiguities
with the x coordinate of the robot. If we denote the control vector ut by ⟨δr1 , δt, δr2⟩,
this particular motion model is defined as: xt

yt
θt

 = g(st−1, ut) =

 xt−1 + δt cos (θt−1 + δr1)
yt−1 + δt sin (θt−1 + δr1)

θt−1 + δr1 + δr2

The Jacobian Gt is obtained by differentiating every row by xt−1, yt−1, θt−1 and
evaluating it at the current estimate of the state µx,t−1, µy,t−1, µθ,t−1:

Gt =

 1 0 −δt sin (µθ,t−1 + δr1)
0 1 δt cos (µθ,t−1 + δr1)
0 0 1

∂

∂xt−1

∂

∂yt−1

∂

∂θt−1

g1
g2
g3

Notice that µx,t−1 and µy,t−1 do not appear in the Jacobian since g is linear w.r.t. xt−1

and yt−1.

3

(b) Implement the prediction step of the EKF in the function prediction_step using
your Jacobian Gt. For the noise in the motion model assume

Qt =

 0.2 0 0
0 0.2 0
0 0 0.02

 .

def prediction_step(odometry, mu, sigma):

Updates the belief, i.e., mu and sigma, according to the motion

model

#

mu: 3x1 vector representing the mean (x,y,theta) of the

belief distribution

sigma: 3x3 covariance matrix of belief distribution

x = mu[0]

y = mu[1]

theta = mu[2]

delta_rot1 = odometry[’r1’]

delta_trans = odometry[’t’]

delta_rot2 = odometry[’r2’]

#motion noise

Q = np.array([[0.2, 0.0, 0.0],\

[0.0, 0.2, 0.0],\

[0.0, 0.0, 0.02]])

#noise free motion

x_new = x + delta_trans * np.cos(theta + delta_rot1)

y_new = y + delta_trans * np.sin(theta + delta_rot1)

theta_new = theta + delta_rot1 + delta_rot2

#Jakobian of g with respect to the state

G = np.array([[1.0, 0.0, -delta_trans * np.sin(theta + delta_rot1)],\

[0.0, 1.0, delta_trans * np.cos(theta + delta_rot1)],\

[0.0, 0.0, 1.0]])

#new mu and sigma

mu = [x_new, y_new, theta_new]

sigma = np.dot(np.dot(G,sigma),np.transpose(G)) + Q

Exercise 3: EKF Correction Step

(a) Derive the Jacobian matrix Ht of the noise-free measurement function h of a range-
only sensor. Do not use Python.

4

Let l = ⟨lx, ly⟩ denote the landmark expressed w.r.t. the world reference frame,
whose distance we are measuring. Then the measurement function h for a single
landmark is scalar (since it returns a single range value) and is as follows:

zt = h(st, l) =
√

(xt−1 − lx)2 + (yt−1 − ly)2

Where we added an l argument to h in order to make it parametric with respect to
the landmark that we are measuring.

Again, we compute the Jacobian Ht by differentiating w.r.t. the state variables and
evaluating it w.r.t. the current estimate of the state:

Ht =

[
µ̄x,t − lx
h(µ̄t, l)

µ̄y,t − ly
h(µ̄t, l)

0

]
If multiple measurements are considered together, say k measurements, then we
simply stack the zt values and the Ht Jacobian matrices as follows:

z̃t = h̃(st) =

h(st, l

(1))
h(st, l

(2))
...

h(st, l
(k))

H̃t =

µ̄x,t − l
(1)
x

h(µ̄t, l(1))

µ̄y,t − l
(1)
y

h(µ̄t, l(1))
0

µ̄x,t − l
(2)
x

h(µ̄t, l(2))

µ̄y,t − l
(2)
y

h(µ̄t, l(2))
0

...
...

...
µ̄x,t − l

(k)
x

h(µ̄t, l(k))

µ̄y,t − l
(k)
y

h(µ̄t, l(k))
0

Where we denoted by l(i) = ⟨l(i)x , l

(i)
y ⟩, the i-th landmark we are measuring.

Note that, although h does not take at all into account the orientation of the robot,
we will, nevertheless, be able to estimate it. This is because the motion model
makes the position and the orientation of the robot correlated, hence if we have
some information on the location of the robot we invariably also have some on the
orientation of the robot, which gets considered in the computation of the Kalman
gain Kt. The inability to measure directly the orientation of the robot does, how-
ever, have as a drawback that its estimate will have a large variance (very noisy).

(b) Implement the correction step of the EKF in the function correction_step using
your Jacobian Ht. For the noise in the sensor model assume that Rt is the diagonal
square matrix

Rt =

0.5 0 0 . . .
0 0.5 0 . . .
0 0 0.5 . . .
...

...
... . . .

 ∈ Rsize(zt)×size(zt).

5

def correction_step(sensor_data, mu, sigma, landmarks):

updates the belief, i.e., mu and sigma, according to the

sensor model

#

The employed sensor model is range-only

#

mu: 3x1 vector representing the mean (x,y,theta) of the

belief distribution

sigma: 3x3 covariance matrix of belief distribution

x = mu[0]

y = mu[1]

theta = mu[2]

#measured landmark ids and ranges

ids = sensor_data[’id’]

ranges = sensor_data[’range’]

Compute the expected range measurements for each landmark.

This corresponds to the function h

H = []

Z = []

expected_ranges = []

for i in range(len(ids)):

lm_id = ids[i]

meas_range = ranges[i]

lx = landmarks[lm_id][0]

ly = landmarks[lm_id][1]

#calculate expected range measurement

range_exp = np.sqrt((lx - x)**2 + (ly - y)**2)

#compute a row of H for each measurement

H_i = [(x - lx)/range_exp, (y - ly)/range_exp, 0]

H.append(H_i)

Z.append(ranges[i])

expected_ranges.append(range_exp)

noise covariance for the measurements

R = 0.5 * np.eye(len(ids))

Kalman gain

K_help = np.linalg.inv(np.dot(np.dot(H,sigma),np.transpose(H)) + R)

K = np.dot(np.dot(sigma,np.transpose(H)),K_help)

6

Kalman correction of mean and covariance

mu = mu + np.dot(K,(np.array(Z) - np.array(expected_ranges)))

sigma = np.dot(np.eye(len(sigma)) - np.dot(K,H),sigma)

7

