
Exercise 10 solutions

July 14, 2023

Exercise: FastSLAM Implementation

FastSLAM is a Rao-Blackwellized particle filter for simultaneous localization and map-
ping. The pose of the robot in the environment is represented by a particle filter. Further-
more, each particle carries a map of the environment, which it uses for localization. In the
case of landmark-based FastSLAM, the map is represented by a Kalman Filter, estimating
the mean position and covariance of landmarks.
Implement the landmark-based FastSLAM algorithm as presented in the lecture. Assume
known feature correspondences.
To support this task, we provide a detailed listing of the algorithm as a PDF file and a
small Python framework on the course website. The framework contains the following
folders:

data contains the world definition and sensor readings used by the filter.

code contains the FastSLAM framework with stubs for you to complete.

You can run the fastSLAM framework in the terminal: python fastslam.py. It will only
work properly once you filled the blanks in the code.

(a) Complete the code blank in the sample_motion_model function by implementing
the odometry motion model and sampling from it. The function updates the poses
of the particles based on the old poses, the odometry measurements δrot1, δtrans and
δrot2 and the motion noise. The motion noise parameters are:

[α1, α2, α3, α4] = [0.1, 0.1, 0.05, 0.05] (1)

How is sampling from the motion model different from the standard particle filter
for localization (Exercise sheet 7)?

def sample_motion_model(odometry, particles):

# Samples new particle positions, based on old positions, the odometry

# measurements and the motion noise
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delta_rot1 = odometry[’r1’]

delta_trans = odometry[’t’]

delta_rot2 = odometry[’r2’]

# the motion noise parameters: [alpha1, alpha2, alpha3, alpha4]

noise = [0.1, 0.1, 0.05, 0.05]

# standard deviations of motion noise

sigma_delta_rot1 = noise[0] * abs(delta_rot1) + noise[1] * delta_trans

sigma_delta_trans = noise[2] * delta_trans + \

noise[3] * (abs(delta_rot1) + abs(delta_rot2))

sigma_delta_rot2 = noise[0] * abs(delta_rot2) + noise[1] * delta_trans

# "move" each particle according to the odometry measurements plus sampled noise

for particle in particles:

#sample noisy motions

noisy_delta_rot1 = delta_rot1 + np.random.normal(0, sigma_delta_rot1)

noisy_delta_trans = delta_trans + np.random.normal(0, sigma_delta_trans)

noisy_delta_rot2 = delta_rot2 + np.random.normal(0, sigma_delta_rot2)

#remember last position to draw path of particle

particle[’history’].append([particle[’x’], particle[’y’]])

# calculate new particle pose

particle[’x’] = particle[’x’] + \

noisy_delta_trans * np.cos(particle[’theta’] + noisy_delta_rot1)

particle[’y’] = particle[’y’] + \

noisy_delta_trans * np.sin(particle[’theta’] + noisy_delta_rot1)

particle[’theta’] = particle[’theta’] + \

noisy_delta_rot1 + noisy_delta_rot2

return

Sampling from the motion model is done exactly like in the standard particle filter
for localization. Our implementation differs slightly from the standard particle fil-
ter. Instead of generating a new particle set, we simply change the poses of each
particle to apply the motion model. The other particle properties, like the observed
landmarks and its weight, stay unchanged.

(b) Complete the code blanks in the eval_sensor_model function. The function imple-
ments the measurement update of the Rao-Blackwellized particle filter, using range
and bearing measurements. It takes the particles and landmark observations and
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updates the map of each particle and calculates its weight w. The noise of the
sensor readings is given by a diagonal matrix

Qt =

[
1.0 0
0 0.1

]
(2)

How is the evaluation of the sensor model different from the standard particle filter
for localization (Exercise sheet 7)?

def eval_sensor_model(sensor_data, particles):

#Correct landmark poses with a measurement and

#calculate particle weight

#sensor noise

Q_t = np.array([[1.0, 0],

[0, 0.1]])

#measured landmark ids and ranges

ids = sensor_data[’id’]

ranges = sensor_data[’range’]

bearings = sensor_data[’bearing’]

#update landmarks and calculate weight for each particle

for particle in particles:

landmarks = particle[’landmarks’]

particle[’weight’] = 1.0

px = particle[’x’]

py = particle[’y’]

ptheta = particle[’theta’]

#loop over observed landmarks

for i in range(len(ids)):

#current landmark

lm_id = ids[i]

landmark = landmarks[lm_id]

#measured range and bearing to current landmark

meas_range = ranges[i]

meas_bearing = bearings[i]

if not landmark[’observed’]:

#landmark is observed for the first time

#initialize landmark position based on the measurement and particle pose
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lx = px + meas_range * np.cos(ptheta + meas_bearing)

ly = py + meas_range * np.sin(ptheta + meas_bearing)

landmark[’mu’] = [lx, ly]

#get expected measurement and Jacobian wrt. landmark position

h, H = measurement_model(particle, landmark)

#initialize covariance for this landmark

H_inv = np.linalg.inv(H)

landmark[’sigma’] = H_inv.dot(Q_t).dot(H_inv.T)

landmark[’observed’] = True

else:

#landmark was observed before

#get expected measurement and Jacobian wrt. landmark position

h, H = measurement_model(particle, landmark)

#Calculate measurement covariance and Kalman gain

S = landmark[’sigma’]

Q = H.dot(S).dot(H.T) + Q_t

K = S.dot(H.T).dot(np.linalg.inv(Q))

#Compute the difference between the observed and the expected measurement

delta = np.array([meas_range - h[0], angle_diff(meas_bearing,h[1])])

#update estimated landmark position and covariance

landmark[’mu’] = landmark[’mu’] + K.dot(delta)

landmark[’sigma’] = (np.identity(2) - K.dot(H)).dot(S)

# compute the likelihood of this observation

fact = 1 / np.sqrt(math.pow(2*math.pi,2) * np.linalg.det(Q))

expo = -0.5 * np.dot(delta.T, np.linalg.inv(Q)).dot(delta)

weight = fact * np.exp(expo)

# alternatively, evaluate normal density with scipy:

# weight = scipy.stats.multivariate_normal.pdf(delta, \

# mean=np.array([0,0]), cov=Q)

# calculate overall weight, account for observing

# multiple landmarks at one time step

particle[’weight’] = particle[’weight’] * weight

#normalize weights

normalizer = sum([p[’weight’] for p in particles])

for particle in particles:
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particle[’weight’] = particle[’weight’] / normalizer

return

The evaluation of the sensor model is quite different from the standard particle filter
for localization. Like in the standard particle filter, we calculate the weight for each
particle, according to the likelihood of the observation. However, in addition we
need to update the Kalman Filter for the landmark observations.

(c) Complete the function resample_particles by implementing stochastic universal
sampling. The function takes as an input a set of particles which carry their weights,
and returns a sampled set of particles.

How does the resampling procedure differ from resampling in the standard particle
filter for localization (Exercise sheet 7)?

def resample_particles(particles):

# Returns a new set of particles obtained by performing

# stochastic universal sampling, according to the particle

# weights.

# distance between pointers

step = 1.0/len(particles)

# random start of first pointer

u = np.random.uniform(0,step)

# where we are along the weights

c = particles[0][’weight’]

# index of weight container and corresponding particle

i = 0

new_particles = []

#loop over all particle weights

for particle in particles:

#go through the weights until you find the particle

#to which the pointer points

while u > c:

i = i + 1

c = c + particles[i][’weight’]

#add that particle

new_particle = copy.deepcopy(particles[i])

new_particle[’weight’] = 1.0/len(particles)

new_particles.append(new_particle)
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#increase the threshold

u = u + step

return new_particles

The resampling procedure is again exactly like in the standard particle filter.
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