Introduction to Mobile Robotics

Transformations (Linear Algebra)

Orthogonal Matrix

- A matrix Q is orthogonal iff its column (row) vectors represent an orthonormal basis

$$
q_{* i}^{T} \cdot q_{* j}=\left\{\begin{array}{lll}
1 & \text { if } \quad i=j \\
0 & \text { if } & i \neq j
\end{array}, \forall i, j\right.
$$

- As linear transformation, it is norm preserving
- Some properties:
- The transpose is the inverse $Q Q^{T}=Q^{T} Q=I$
- Determinant has unity norm (± 1)

$$
1=\operatorname{det}(I)=\operatorname{det}\left(Q^{T} Q\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{T}\right)=\operatorname{det}(Q)^{2}
$$

Rotation Matrix

- A Rotation matrix is an orthonormal matrix with det $=+1$
- 2D Rotations $\quad R(\theta)=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
- 3D Rotations along the main axes

$$
\begin{gathered}
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
R_{x}\left(\frac{\pi}{4}\right) \cdot R_{y}\left(\frac{\pi}{4}\right)=\left[\begin{array}{ccc}
0.707 & 0 & -0.707 \\
-0.5 & 0.707 & -0.5 \\
0.5 & 0.707 & 0.5
\end{array}\right], R_{x}\left(\frac{\pi}{4}\right) \cdot R_{y}\left(\frac{\pi}{4}\right) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.414 \\
0.586 \\
3.414
\end{array}\right] \\
R_{y}\left(\frac{\pi}{4}\right) \cdot R_{x}\left(\frac{\pi}{4}\right)=\left[\begin{array}{ccc}
0.707 & -0.5 & -0.5 \\
0 & 0.707 & -0.707 \\
0.707 & 0.5 & 0.5
\end{array}\right], R_{y}\left(\frac{\pi}{4}\right) \cdot R_{x}\left(\frac{\pi}{4}\right) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.793 \\
0.707 \\
3.207
\end{array}\right]
\end{gathered}
$$

Matrices to Represent Affine Transformations

- A general and easy way to describe a 3D transformation is via matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{R} & \mathbf{t}^{+} \\
0 & 1
\end{array}\right) \mathbf{A}^{-1}=\left(\begin{array}{cc}
\mathbf{R}^{T} & -\mathbf{R}^{T} \mathbf{t} \\
0 & 1
\end{array}\right) \mathbf{p}=\binom{\mathbf{t}}{1}
$$

- Takes naturally into account the noncommutativity of the transformations
- Homogeneous coordinates

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \boldsymbol{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \boldsymbol{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \boldsymbol{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world

Further Reading

" A "quick and dirty" guide to matrices is the Matrix Cookbook available at: http://matrixcookbook.com

