Introduction to Mobile Robotics

Transformations (Linear Algebra)

Orthogonal Matrix

 A matrix Q is orthogonal iff its column (row) vectors represent an orthonormal basis

$$q_{*i}^T \cdot q_{*j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \forall i, j$$

- As linear transformation, it is **norm** preserving
- Some properties:
 - The transpose is the inverse $QQ^T = Q^TQ = I$
 - Determinant has unity norm (±1)

$$1 = det(I) = det(Q^T Q) = det(Q)det(Q^T) = det(Q)^2$$

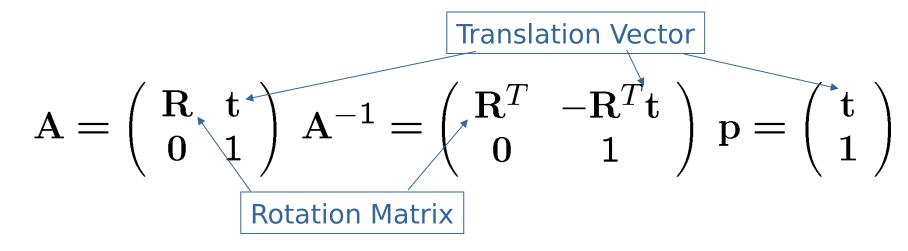
Rotation Matrix

- A Rotation matrix is an orthonormal matrix with det =+1
 - 2D Rotations $R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
 - 3D Rotations along the main axes

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
$$R_{x}(\frac{\pi}{4}) \cdot R_{y}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, \quad R_{x}(\frac{\pi}{4}) \cdot R_{y}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$
$$R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & 0.5 & 0.5 \end{bmatrix}, \quad R_{y}(\frac{\pi}{4}) \cdot R_{x}(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

Matrices to Represent Affine Transformations

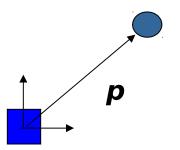
A general and easy way to describe a 3D transformation is via matrices



- Takes naturally into account the noncommutativity of the transformations
- Homogeneous coordinates

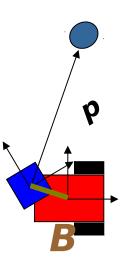
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix **B** represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?



Combining Transformations

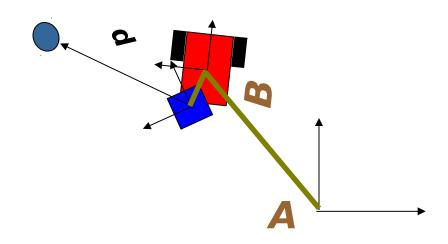
- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix **B** represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?



Bp gives the pose of the object wrt the robot

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix **B** represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?



Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world

Further Reading

 A "quick and dirty" guide to matrices is the Matrix Cookbook available at:

http://matrixcookbook.com