Introduction to Mobile Robotics

Proximity Sensors

Daniel Büscher

Sensors of Mobile Robots

Perception of the environment

Measure contact with objects

Touch sensor

Bumper sensor

Ultrasound Sensors

- Emit an ultrasound signal
- Wait until they receive the echo
- Time of flight sensor

Time of Flight Sensors

$$d = v \times t / 2$$

- *v*: speed of the signal
- t: time elapsed between broadcast of signal and reception of the echo.

Properties of Ultrasounds

Signal profile (Polaroid)

Sources of Error

- Opening angle
- Crosstalk
- Specular reflection

Typical Ultrasound Scan

Parallel Operation

- Given a 15 degrees opening angle: 24 sensors cover 360 degrees
- Let the maximum range be 10m, hence
 t = 2 * 10 m / (330 m/s) = 0.06 s
- Complete scan: 24 * 0.06 s = 1.45 s
- Too slow for control, hence sensors have to be fired in parallel
- Increases risk of crosstalk

Laser Range Scanner

- High precision
- Wide field of view
- Some are approved for emergency stops (collision detection)

Computing the End Points

Example: SICK LMS

- Array or range readings [1; 1.2; 1.5; 0.1; 81.9; ...]
- Field of view of 180 deg
- First beams at -90 deg
- Maximum range: ~80 m
- (x, y) = r * (cos a, sin a)
- Typical question: Where are the end points in an external coordinate system?

Robots Equipped with Laser Scanners

Typical Scans

3D Kamera (Kinect)

Questions?