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Probabilistic Robotics

Introduction to
Mobile Robotics
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Probabilistic Robotics
Key idea: 

Explicit representation of uncertainty 
(using the calculus of probability theory)
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P(A) denotes probability that proposition A is true.

▪  

▪
 

▪

Axioms of Probability Theory
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A Closer Look at Axiom 3

B
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Using the Axioms
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Discrete Random Variables

▪ X denotes a random variable

▪ X can take on a countable number of values 
in {x1, x2, …, xn}

▪ P(X=xi) or P(xi) is the probability that the 
random variable X takes on value xi

▪ P( ) is called probability mass function

▪ E.g.

.
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Continuous Random Variables

▪ X takes on values in the continuum.
▪ p(X=x) or p(x) is a probability density 

function

▪ E.g.

x

p(x)
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“Probability Sums up to One”

Discrete case Continuous case
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Joint and Conditional Probability

▪ P(X=x and Y=y) = P(x,y)
▪ Def: P(x | y) is the probability of x given y

P(x | y) = P(x,y) / P(y)
P(x,y)   = P(x | y) P(y)

▪ Def: If X and Y are independent then for all 
x, y:

P(x,y) = P(x) P(y)  

⇔ P(x | y) = P(x)



▪ Def:

▪ Equivalent to
   

 and

▪ But this does not necessarily mean

  (independence/marginal independence)
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Conditional Independence
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 Marginalization

Discrete case Continuous case
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Law of Total Probability

Discrete case Continuous case



Definition: P(x,y|z) = P(x|z)P(y|z)

▪ Equivalent to  P(x|z) = P(x|z,y)  ?

▪ Implies  P(x|y) = P(x)  ?                                       

▪ Is implied by  P(x|y) = P(x)  ?
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Quiz on Conditional 
Independence
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Bayes Formula
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Normalization

Algorithm:
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Bayes Rule 
with Background Knowledge
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Simple Example of State Estimation

▪ Suppose a robot obtains measurement z
▪ What is P(open | z)?
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Causal vs. Diagnostic Reasoning

▪ P(open|z) is diagnostic
▪ P(z|open) is causal
▪ In some situations, causal knowledge 
is easier to obtain
▪ Bayes rule allows us to use causal 
knowledge:

count frequencies!
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Example
▪ z=open
▪ P(z|open) = 0.6 P(z|¬open) = 0.3
▪ P(open) = P(¬open) = 0.5

Probability that door is open after measurement?
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Example
▪ z=open
▪ P(z|open) = 0.6 P(z|¬open) = 0.3
▪ P(open) = P(¬open) = 0.5

▪ z raises the probability that the door is open
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Combining Evidence
▪ Suppose our robot obtains another 

observation z2

▪ How can we integrate this new information?

▪ More generally, how can we estimate
P(x | z1, ..., zn )?
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Recursive Bayesian Updating

Markov assumption: 
zn is independent of z1,...,zn-1 if we know x
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Example: Second Measurement 

▪ P(z2|open) = 0.25 P(z2|¬open) = 0.3
▪ P(open|z1)=2/3

• z2 lowers the probability that the door is open
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A Typical Pitfall
▪ Two possible locations x1 and x2
▪ P(x1)=0.99 
▪ P(z|x2)=0.09 P(z|x1)=0.07 
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Actions

▪ Often the world is dynamic since
▪ actions carried out by the robot,
▪ actions carried out by other agents,
▪ or just the time passing by

change the world

▪ How can we incorporate such actions?



26

Typical Actions

▪ The robot turns its wheels to move
▪ The robot uses its manipulator to grasp 

an object
▪ Plants grow over time …

▪ Actions are never carried out with 
absolute certainty

▪ In contrast to measurements, actions 
generally increase the uncertainty
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Modeling Actions

▪ To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf 

P(x | u, x’)

▪ This term specifies the pdf that 
executing u changes the state 
from x’ to x.
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Example: Closing the door
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State Transitions
P(x | u, x’) for u = “close door”:

If the door is open, the action “close door” 
succeeds in 90% of all cases



Continuous case:

Discrete case:

We will make an independence assumption to 
get rid of the u in the second factor in the 
sum. 
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Integrating the Outcome of Actions
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Example: The Resulting Belief
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Bayes Filters: Framework
▪ Given:
▪ Stream of observations z and action data u:

▪ Sensor model P(z | x)
▪ Action model P(x | u, x’)
▪ Prior probability of the system state P(x)

▪ Wanted: 
▪ Estimate of the state X of a dynamical system
▪ The posterior of the state is also called Belief:
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Markov Assumption

Underlying Assumptions
▪ Independent noise
▪ Perfect model, no approximation errors
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Bayes Filters

Bayes

z  = observation
u  = action
x  = state

Markov

Markov

Total prob.

Markov
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Bayes Filter Algorithm 
1.  Algorithm Bayes_filter(Bel(x), d):
2.  η=0
3.  If d is a perceptual data item z then
4.      For all x do
5.  
6.  
7.      For all x do
8.  
9.  Else if d is an action data item u then

10.      For all x do
11.  
12.  Return Bel’(x)      
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Implementations of the Bayes 
Filter

▪ Kalman filters
▪ Particle filters



Probabilistic Localization
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Summary

▪ Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise.
▪ Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence.
▪ Bayes filters are a probabilistic tool 
for estimating the state of dynamic 
systems.


