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Probabilistic Robotics
Key idea:

Explicit representation of uncertainty
(using the calculus of probability theory)



Axioms of Probability Theory

P(A) denotes probability that proposition A is true.

0<P(4)<1
" P(True)=1 P(False)=0

* P(AvB)=P(4)+P(B)-P(4AAB)



A Closer Look at Axiom 3

P(Av B)=P(4)+P(B)-P(4AB)

True
4 ANB B




Using the Axioms

P(Av—4) = P(A)+P(—A)-P(AAr—-A4)
P(True) = P(A)+P(—A)—P(False)
1 = P(4)+P(—A4)-0

P(—4) = 1-P(A4)



Discrete Random Variables

= X denotes a random variable

= X can take on a countable number of values
N {x,X,, ..., X }
n

= P(X=x,) or P(x) is the probability that the
random variable X takes on value X,

= P(+) is called probability mass function

0 E.g . P(ROOm) — <O7, 02, 0089 002>



Continuous Random Variables

= X takes on values in the continuum.
= p(X=x) or p(x) is a probability density
function

P(x €[a,b])= Tp(x)dx
- Eg A ’

p(x)




“Probability Sums up to One”

Discrete case Continuous case

ZP(x) =1 _[ p(x)dx =1



Joint and Conditional Probability

* P(X=x and Y=y) = P(x,))
= Def: P(x|y)is the probability of x given y
P(x | y) = P(x,y)/ P(y)
P(x,y) =P(x|y)P(y)
= Def: If X and Y are independent then for all
X, V:
P(x,y) = P(x) P(y)
< Plx|y)=Px)



Conditional Independence

» Def: P(x,y|z)=P(x|z)P(y|z)

» Equivalent to  P(x|z)=P(x|z, y)
and P(y|z)=P(y|z,x)

= But this does not necessarily mean

P(x,y)=P(x)P(y)
(independence/marginal independence)
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Marginalization

Discrete case

P(x)=D_P(x,y)

Continuous case

p(x)= | p(x.y) dy
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Law of Total Probability

Discrete case Continuous case

P(x)=Y P(x|»)P(y)  p(x)=| p(x|)p()dy
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Quiz on Conditional
Independence

Definition: P(x,y|z) = P(x|z)P(y|z)
« Equivalent to P(x|z) = P(x|z,y) ?
= Implies P(x|y) = P(x) ?

= Is implied by P(x]y) = P(x) ?
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Bayes Formula

P(x,y)=P(x|y)P(y)=P(y|x)P(x)
—

P(y|x) P(x) likelihood - prior
Py = PO PO _ p

P(y) evidence




Normalization

Px| =2 0’1'[,’“(); &) _ ) POy | ) P(x)
L 1
Y T
Algorithm: ’

Vxaux,, = P(y|x) P(x)

1
1T S

Vx:P(x|y)=naux
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Bayes Rule
with Background Knowledge

P(y|x) P(x)

Pl )= P(y)

P(y|x,z) P(x|z)
P(y|z)

P(x|y,z)=
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Simple Example of State Estimation

= Suppose a robot obtains measurement z
= What is P(open | z)?

J—
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Causal vs. Diagnostic Reasoning

= P(open|z) is diagnostic

= P(z|open) is causal

= In some M, causal knowledge
is easier to obtain” count frequencies!

= Bayes rule allows us to usg’ causal
knowledge:

P(z |open)P(open)
P(z)

P(open|z)=
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Example

= z=0pen
= P(zlopen) = 0.6  P(z|—open) = 0.3
= P(open) = P(—open) = 0.5

Probability that door is open after measurement?
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Example

= z=0pen
= P(zlopen) = 0.6  P(z|~open) = 0.3
= P(open) = P(—open) = 0.5

P(z| open)P(open)
P(z|open) p(open)+ P(z | —open) p(—open)
0.6-0.5 03
0.6-0.5+0.3-0.5 0.3+0.15

P(open| z) =

P(open|z) = =0.67

= 7 raises the probability that the door is open
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Combining Evidence

= Suppose our robot obtains another
observation z,

= How can we integrate this new information?

= More generally, how can we estimate
Px|z,..,z)?
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Recursive Bayesian Updating

P(zn|x,z1,... ,zn-1) P(x | 2z1,... ,Zn-1)
P(zn|z1,... ,2zn-1)

P(x|zi... ,zn)=

Markov assumption:
z is independent of z ...,z if we know x

P(zn|x) P(x|z1... ,20n-1)
P(zn| 21y y2n-1)
=1n P(zn| x) P(x|z1y... ,Z0-1)

P(x|zy... ,zn)=
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Example: Second Measurement

= P(z,|lopen) = 0.25 P(z,|~open) = 0.3
= P(open|z,)=2/3

P(z, |open) P(open |z,)

P(open |z,,z,) =
P(z, |open) P(open |z,)+ P(z, | ~open) P(—open | z,)

12 1 1
_ 43 _ 6 _ 6 _95_
‘1231‘11‘4‘8‘0'625
43 103 6 10 15

* z, lowers the probability that the door is open
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A Typical Pitfall

= Two possible locations X, and X,
o P(x1)=0.99
= P(z]x,)=0.09 P(z|x,)=0.07

gl

| | | | | - l
5 10 15 2 2 30 3 40 45
Number of integrations
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Actions

= Often the world is dynamic since
» actions carried out by the robot,
= actions carried out by other agents,
= Or just the time passing by
change the world

= How can we incorporate such actions?
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Typical Actions

= The robot turns its wheels to move

= The robot uses its manipulator to grasp
an object

= Plants grow over time ...

= Actions are never carried out with
absolute certainty

= In contrast to measurements, actions
generally increase the uncertainty
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Modeling Actions

= To incorporate the outcome of an
action v into the current “belief”, we
use the conditional pdf

P(x | u, x’)

= This term specifies the pdf that
executing u changes the state
from x’ to x.
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Example: Closing the door

-
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State Transitions

P(x|u, x’) for u = “close door”:

09 g
N 0

If the door is open, the action “close door”
succeeds in 90% of all cases
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Integrating the Outcome of Actions

Continuous case:
P(x |u)= _[ P(x |u,x")P(x"'98)dx'

Discrete case:

P(x|u)= ZP(X u, x")P(x" @)

We will make an independence assumption to

get rid of the u in the second factor in the

sum.
30



Example: The Resulting Belief
P(closed |u) = ZP(Closed lu, x")P(x")
= P(closed | u,open)P(open)
+ P(closed | u, closed)P(closed)
=9 5 1.3_15

10 8 1 8 16
P(open|u)= ZP(open lu, x")P(x")
= P(open | u,open)P(open)
+ P(open |u, closed)P(closed)
1 5 0 3 1
— S N
10 8 1 8 16
=1-P(closed | u)
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Bayes Filters: Framework

= Given:
= Stream of observations z and action data u:

d={u,z,..,u,z,

= Sensor model P(z | x)
= Action model P(x | u, x’)
= Prior probability of the system state P(x)
» Wanted:
= Estimate of the state X of a dynamical system

= The posterior of the state is also called Belief:

Bel(x,)=P(x, |u,z,,... ,u,z,)

> T
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Markov Assumption

P(z, | x, 21, ou,) = P(z,
P(xz |x1:t—1921:t—19u1:t) — P(xt

Underlying Assumptions
= Independent noise

t

xt—lﬂut)

= Perfect model, no approximation errors
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z = obs_ervation
Bayes Filters T St
Bel(x,)=P(x, |u,z, ... ,u,z,)
Bayes =n P(z, |x,u,z,..,u)P(x, |u,z,.. u)

Markov — TI P(Zt xt) P(Xt |M1,Zl, ,l/lt)

Totalprob. =1 P(z,|X,) J-P(xt Uy, Zpy e s Uy, X, )

P(x,_ |u,z,.. ,u)dx,_
Markov =n P(z, | x,) _[P(xt u,x, ) P(x,_ |u,z, ... ,u,)dx,
Markov =nP(z, | x,) J.P(xt lu,x ) P(x, |u,z,..,z,)dx,

=nP(z,|x,) | P(x,|u,x,,) Bel(x,,) dx,
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Bel(xt) :nP(Zt |)Ct)J‘P(xt |ut9x1—1)Bel(xt—l)dxt—l

0

.
N = O

X NOUR WD

Algorithm Bayes_filter(Bel(x), d):

7=0

If d is a perceptual data item z then
For all x do

Bel'(x)=P(z|x)Bel(x)
N =1+ Bel'(x)
For all x do

Bel'(x)=7"'Bel'(x)
Else if d is an action data item u then

For all x do

Bel'(x)= | P(x|u,x") Bel(x') dx’
ReturnBeez’((f)) J. (x|u,x") Bel(x') dx
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Implementations orf the Bayes
Filter

Bel(x,)=nP(z, |x,) I P(x, |u,,x, )Bel(x,_)dx,

= Kalman filters
= Particle filters
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Probabilistic Localization

p(x | u,z") Bel(z)dx'

/

T

ap(z|x)

Bel(x | z,u)

1
T I I
T

E-T T I

I
T

..»'J\"Ll




Summary

= Bayes rule allows us to compute
probabilities that are hard to assess
otherwise.

= Under the Markov assumption,
recursive Bayesian updating can be
used to efficiently combine evidence.

= Bayes filters are a probabilistic tool
for estimating the state of dynamic
systems.

38



