I ntroduction to Mobile Robotics

Probabilistic Motion Models

Daniel Büscher

Robot Motion

- Robot motion is inherently uncertain
- How can we model this uncertainty?

Dynamic Bayesian Network

- Models dependencies of controls, states, and measurements

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p\left(x_{t} \mid x_{t-1}, u_{t}\right)$
- It specifies a posterior probability that action u_{t} carries the robot from x_{t-1} to x_{t}
- In this section we will discuss how this "motion model" can be calculated using
- the motion equations and
- the uncertain outcome of the movements

Coordinate Systems

- The configuration of a wheeled robot in 3D can be described by six parameters:
- three Cartesian coordinates x, y, z
- three Euler angles for roll, pitch, and yaw
- For simplicity, we consider robots operating on a planar surface
- Reduced state space: three-dimensional (x, y, θ)

Typical Motion Models

- Odometry-based
- Used if wheel encoders are available
- Based on the measured wheel revolutions
- Uncertainty from wheel slippage, ...
- Velocity-based ("dead reckoning")
- Can be applied without wheel encoders
- Typically based on a velocity control command
- Additional uncertainty from actuation precision

Both calculate the new pose using the elapsed time

Content

1. Odometry model: calculate posterior $p\left(x^{\prime} \mid x, u\right)$
2. Sampling: draw an x^{\prime} according to the posterior
3. Velocity-based model: posterior and sampling
4. Rejection sampling: samples from arbitrary dist.
5. Map-consistent motion: considering obstacles

1. Odometry model

Example Wheel Encoders

- Disks fixed to wheels
- Typically plastic with black/white transitions
- Enable wheel encoder sensors to easily detect transitions

Modules provide

- +5 V output when they "see" white
- OV output when
 they "see" black

Typical Motion Errors

ideal case

different wheel diameters

carpets
and many more ...

Odometry Model

- Robot moves from $\langle\bar{x}, \bar{y}, \bar{\theta}\rangle$ to $\left\langle\bar{x}^{\prime}, \bar{y}^{\prime}, \bar{\theta}^{\prime}\right\rangle$
- Odometry information $u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot2 } 2}, \delta_{\text {trans }}\right\rangle$

$$
\begin{aligned}
& \delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}} \\
& \delta_{\text {rot } 1}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \\
& \delta_{\text {rot } 2}=\overline{\theta^{\prime}}-\bar{\theta}-\delta_{\text {rot } 1}
\end{aligned}
$$

$$
\langle\bar{x}, \bar{y}, \bar{\theta}\rangle
$$

The atan2 Function

- The tan function is periodic in ($-\pi / 2, \pi / 2$), hence its inverse (atan) covers only half a circle
- The atan2 function extends atan to the full circle
- Correctly copes with signs and zeros of x and y

$$
\operatorname{atan} 2(y, x)= \begin{cases}\operatorname{atan}(y / x) & \text { if } x>0 \\ \operatorname{sign}(y)(\pi-\operatorname{atan}(|y / x|)) & \text { if } x<0 \\ 0 & \text { if } x=y=0 \\ \operatorname{sign}(y) \pi / 2 & \text { if } x=0, y \neq 0\end{cases}
$$

Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise
- Since we don't have access to the true motion, we can write

Hypothesis Measured Noise

Typical Distributions for Probabilistic Motion Models

Normal distribution

$$
\varepsilon_{\sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}}
$$

Triangular distribution

$$
\varepsilon_{\sigma^{2}}(x)=\left\{\begin{array}{c}
0 \text { if }|\mathrm{x}|>\sqrt{6 \sigma^{2}} \\
\frac{\sqrt{6 \sigma^{2}}-|x|}{6 \sigma^{2}}
\end{array}\right.
$$

Calculating the Probability Densities (zero-centered)

- For a normal distribution
query point
/

1. Algorithm prob_normal_distribution (a, b) :
2. return $\frac{1}{\sqrt{2 \pi b^{2}}} \exp \left\{-\frac{1}{2} \frac{a^{2}}{b^{2}}\right\}$
std. deviation

- For a triangular distribution

1. Algorithm prob_triangular_distribution (a, b) :
2. return $\max \left\{0, \frac{1}{\sqrt{6} b}-\frac{|a|}{6 b^{2}}\right\}$

The Posterior $p\left(x^{\prime} \mid x, u\right)$

1. Algorithm motion_model_odometry $\boldsymbol{x}, \boldsymbol{x}^{\prime} \overline{\boldsymbol{x}}, \overline{\boldsymbol{x}}^{\prime}$
2. $\delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}}$
3. $\delta_{\text {rot } 1}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \quad$ odometry (u)
4. $\delta_{\text {rot } 2}=\bar{\theta}^{\prime}-\bar{\theta}-\delta_{\text {rot } 1}$
5. $\hat{\delta}_{\text {trans }}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}$
6. $\hat{\delta}_{\text {rot } 1}=\operatorname{atan} 2\left(y^{\prime}-y, x^{\prime}-x\right)-\theta$
7. $\hat{\delta}_{\text {rot } 2}=\theta^{\prime}-\theta-\hat{\delta}_{\text {rot } 1}$
values of interest /
hypotheses (x, x^{\prime})
8. $p_{1}=\operatorname{prob}\left(\delta_{\text {rotl }}-\hat{\delta}_{\text {rot }}, \alpha_{1}\left|\delta_{\text {rot } 1}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
9. $p_{2}=\operatorname{prob}\left(\delta_{\text {trans }}-\hat{\delta}_{\text {trans }}, \alpha_{3} \delta_{\text {trans }}+\alpha_{4}\left(\left|\delta_{\text {rot1 }}\right|+\left|\delta_{\text {rot2 }}\right|\right)\right)$
10. $p_{3}=\operatorname{prob}\left(\delta_{\text {rot2 } 2}-\hat{\delta}_{\text {rot } 2}, \alpha_{1}\left|\delta_{\text {rot } 2}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
11. return $p_{1} \cdot p_{2} \cdot p_{3}$ prop_normal_distribution

Typical outcome

- Repeated application of the motion model for short movements:
- Banana-shaped distributions for the 2d-projection of the 3d posterior

2. Sampling

Sample-Based Density Representation

Sampling from a triangular dist.

1. Algorithm sample_triangular_distribution (b) :
2. return $\frac{\sqrt{6}}{2}[\operatorname{rand}(-b, b)+\operatorname{rand}(-b, b)]$

Uniform distribution
Common example: sum of two dice

Triangular Distributed Samples

10^{4} samples

Sampling from a normal dist.

1. Algorithm sample_normal_distribution(b):
2. return $\frac{1}{2} \sum_{i=1}^{12} \operatorname{rand}(-b, b)$

Corresponds to 12-step random walk / 12th order Irwin-Hall distribution:

Source: wikipedia

Normally Distributed Samples

Sample Odometry Motion Model

1. Algorithm sample_motion_model (u, x) :

$$
u=\left\langle\delta_{\text {rot } 1}, \delta_{\text {rot } 2}, \delta_{\text {trans }}\right\rangle, x=\langle x, y, \theta\rangle
$$

2. $\hat{\delta}_{\text {rot } 1}=\delta_{\text {rot } 1}+\operatorname{sample}\left(\alpha_{1}\left|\delta_{\text {rot } 1}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
3. $\hat{\delta}_{\text {trans }}=\delta_{\text {trans }}+\operatorname{sample}\left(\alpha_{3} \delta_{\text {trans }}+\alpha_{4}\left(\left|\delta_{\text {rot } 1}\right|+\left|\delta_{\text {rot } 2}\right|\right)\right)$
4. $\hat{\delta}_{\text {rot } 2}=\delta_{\text {rot } 2}+\operatorname{sample}\left(\alpha_{1}\left|\delta_{\text {rot } 2}\right|+\alpha_{2} \delta_{\text {trans }}\right)$
5. $x^{\prime}=x+\hat{\delta}_{\text {trans }} \cos \left(\theta+\hat{\delta}_{\text {rot1 }}\right) \quad$ sample_normal_distribution
6. $y^{\prime}=y+\hat{\delta}_{\text {trans }} \sin \left(\theta+\hat{\delta}_{\text {rot } 1}\right)$
7. $\theta^{\prime}=\theta+\hat{\delta}_{\text {rot } 1}+\hat{\delta}_{\text {rot } 2}$
8. return $\left\langle x^{\prime}, y^{\prime}, \theta^{\prime}\right\rangle$

Examples for Odometry Model

Consecutive Samples

3. Velocity-based model

Dead Reckoning

- Procedure for determining the location of a vehicle
- Calculates the current pose based on its velocities and the elapsed time
- Historically used to estimate the position of ships
" A "chip log" was thrown into the water
- Attached to a rope with knots at known intervals
- The number of knots that went overboard in a fixed time was used to determine the velocity

Velocity-Based Model

Noise Parameterization

- The hypothesis for the true motion is given by the measurement plus noise:

$$
\begin{aligned}
& \hat{v}=v+\varepsilon_{\alpha_{1}|v|+\alpha_{2}|\omega|} \\
& \hat{\omega}=\omega+\varepsilon_{\alpha_{3}|v|+\alpha_{4}|\omega|}
\end{aligned}
$$

- What is a limitation of this parameterization?
- The ($\hat{v}, \hat{\omega}$)-circle constrains the final orientation (2D manifold in a 3D space)

Noise Parameterization

- Add a parameter to account for an uncertainty in the final rotation:

$$
\begin{aligned}
& \hat{\mathcal{v}}=v+\varepsilon_{\alpha_{1}|v|+\alpha_{2}|\omega|} \\
& \hat{\omega}=\omega+\varepsilon_{\alpha_{3}|v|+\alpha_{4}|\omega|} \\
& \hat{\gamma}=\varepsilon_{\alpha_{5}|v|+\alpha_{6}|\omega|}
\end{aligned}
$$

Calculate Final Pose from the Velocities

Center of circle:

$$
\binom{x^{x^{*}}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}
$$

Distance to the ICC $=$ radius of the circle $\lambda=v / \omega$

Note: center of the circle is orthogonal to the initial heading

Calculate Final Pose from the Velocities

Center of circle:

$$
\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}
$$

Final pose:

$$
\begin{aligned}
& x^{\prime}=x-\frac{\hat{v}}{\hat{\omega}} \sin \theta+\frac{\hat{v}}{\hat{\omega}} \sin (\theta+\hat{\omega} \Delta t) \\
& y^{\prime}=y+\frac{\hat{v}}{\hat{\omega}} \cos \theta-\frac{\hat{v}}{\hat{\omega}} \cos (\theta+\hat{\omega} \Delta t) \\
& \theta^{\prime}=\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t
\end{aligned}
$$

Calculate Velocities from Poses

Center of circle:

$$
\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}=\binom{\frac{x+x^{\prime}}{+}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)}
$$

Some constant μ to be determined.
The center of the circle lies on a ray halfway between x and x^{\prime} that is orthogonal to the line between x and x^{\prime}

Calculate Velocities from Poses

Center of circle:

$$
\binom{x^{*}}{y^{*}}=\binom{x}{y}+\binom{-\lambda \sin \theta}{\lambda \cos \theta}=\binom{\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)}{\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)}
$$

Allows to solve for μ :

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

Calculate Velocities from Poses

Parameters of the circle arc:

$$
\begin{aligned}
& r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}} \\
& \Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)
\end{aligned}
$$

Allows for computing the velocities:

$$
\begin{aligned}
v & =\frac{\Delta \theta}{\Delta t} r^{*} \\
\omega & =\frac{\Delta \theta}{\Delta t}
\end{aligned}
$$

The Posterior $p\left(x^{\prime} \mid x, u\right)$

1: \quad Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right): \quad x_{t-1}=(x, y, \theta)^{T}$

$$
x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}
$$

2 :

$$
\mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta}
$$

$$
u=(v, \omega)^{T}
$$

3:

$$
x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right)
$$

4:

$$
y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right)
$$

5:

$$
r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}}
$$

6:

$$
\Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right)
$$

7: $\quad \hat{v}=\frac{\Delta \theta}{\Delta t} r^{*}$
8: $\quad \hat{\omega}=\frac{\Delta \theta}{\Delta t}$
9:

$$
\hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}
$$

10:

$$
\operatorname{return} \operatorname{prob}\left(v-\hat{v}, \alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)
$$

$$
\cdot \operatorname{prob}\left(\hat{\gamma}, \alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)
$$

Sampling from Velocity Model

1: \quad Algorithm sample_motion_model_velocity $\left(u_{t}, x_{t-1}\right)$:

2 :

$$
\hat{v}=v+\operatorname{sample}\left(\alpha_{1} v^{2}+\alpha_{2} \omega^{2}\right)
$$

3:
4:
5:
6:
$\hat{\omega}=\omega+\operatorname{sample}\left(\alpha_{3} v^{2}+\alpha_{4} \omega^{2}\right)$
$\hat{\gamma}=\operatorname{sample}\left(\alpha_{5} v^{2}+\alpha_{6} \omega^{2}\right)$
$x^{\prime}=x-\frac{\hat{v}}{\hat{\omega}} \sin \theta+\frac{\hat{v}}{\hat{\omega}} \sin (\theta+\hat{\omega} \Delta t)$

7:
$y^{\prime}=y+\frac{\hat{v}}{\hat{\omega}} \cos \theta-\frac{\hat{v}}{\hat{\omega}} \cos (\theta+\hat{\omega} \Delta t)$

8:
$\theta^{\prime}=\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t$
return $x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}$

Examples for Velocity Model

θ

Q

4. Rejection sampling

How to Sample from Arbitrary f?

Answer: Rejection Sampling

- First, sample from uniform distributions:
- x in [-b, b]
- y in $[0, \max f]$
- if $f(x)>y$ otherwise
keep the sample x
reject it

Rejection Sampling Algorithm

1. Algorithm sample_distribution(f, b):
2. repeat
3. $x=\operatorname{rand}(-b, b)$
4. $y=\operatorname{rand}(0, \max \{f(x) \mid x \in[-b, b]\})$
5. until $y \leq f(x)$
6. return x

5. Map-consistent motion

Map-Consistent Motion Model

Solid wall

Questions?

