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Robot Motion 
▪ Robot motion is inherently uncertain 
▪ How can we model this uncertainty? 
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▪ Models dependencies of controls, states, and 
measurements 

Dynamic Bayesian Network  
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Probabilistic Motion Models 
▪ To implement the Bayes Filter, we need the 

transition model 

▪ It specifies a posterior probability that action ut 
carries the robot from xt-1 to xt 

▪ In this section we will discuss how this “motion 
model” can be calculated using 

▪ the motion equations and 

▪ the uncertain outcome of the movements 
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Coordinate Systems 
▪ The configuration of a wheeled robot in 3D can 

be described by six parameters: 

▪ three Cartesian coordinates x, y, z 

▪ three Euler angles for roll, pitch, and yaw 

▪ For simplicity, we consider robots operating on a 
planar surface 

▪ Reduced state space: 
three-dimensional 
(x, y, θ) 
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Typical Motion Models 

▪ Odometry-based 
▪ Used if wheel encoders are available 
▪ Based on the measured wheel revolutions 
▪ Uncertainty from wheel slippage, … 

▪ Velocity-based (“dead reckoning”) 
▪ Can be applied without wheel encoders 
▪ Typically based on a velocity control command 
▪ Additional uncertainty from actuation precision 

Both calculate the new pose using the elapsed time 
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Content 

1. Odometry model: calculate posterior p(x’|x,u) 
2. Sampling: draw an x’ according to the posterior 
3. Velocity-based model: posterior and sampling 
4. Rejection sampling: samples from arbitrary dist. 
5. Map-consistent motion: considering obstacles 
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1. Odometry model 
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Example Wheel Encoders 

Modules provide  
▪ +5V output when 

they "see" white 
▪ 0V output when 

they "see" black  

▪ Disks fixed to wheels 
▪ Typically plastic with 

black/white transitions 
▪ Enable wheel encoder 

sensors to easily 
detect transitions  

 

Source: www.active-robots.com 
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and many more … 

bumps 

ideal case 

carpets 

different wheel 
diameters 

Typical Motion Errors 



▪  Robot moves from         to 

Odometry Model 
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▪  Odometry information 
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The atan2 Function 
▪ The tan function is periodic in (-π/2, π/2), hence 

its inverse (atan) covers only half a circle 
▪ The atan2 function extends atan to the full circle 
▪ Correctly copes with signs and zeros of x and y 



Noise Model for Odometry 
▪ The measured motion is given by the true motion 

corrupted with noise 
▪ Since we don’t have access to the true motion, we 

can write 
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Measured Hypothesis Noise 



Typical Distributions for 
Probabilistic Motion Models 

Normal distribution Triangular distribution 
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- - 
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Calculating the Probability 
Densities (zero-centered) 
▪ For a normal distribution 
 
 
 
 
 

▪ For a triangular distribution 

1. Algorithm prob_normal_distribution(a,b): 
  

2. return   

1. Algorithm prob_triangular_distribution(a,b): 
  

2. return   

query point 

std. deviation 



1. Algorithm motion_model_odometry 
2.   
3.   
4.   
5.   
6.   
7.   
8.   
9.   
10.   

11. return  p1 · p2 · p3 
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odometry (u) 

values of interest / 
hypotheses (x,x’) 

prop_normal_distribution 

The Posterior p(x’|x, u) 



Typical outcome 
▪ Repeated application of the motion model for short 

movements: 
▪ Banana-shaped distributions for the 2d-projection 

of the 3d posterior 
 

x 
u 

u 

x 

17 



18 

2. Sampling 
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Sample-Based Density Representation  
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1. Algorithm sample_triangular_distribution(b): 
  

2. return   

Sampling from a triangular dist. 
 
 

http://hyperphysics.phy-
astr.gsu.edu/hbase/Math/dice.html 

Common example: sum of two dice 

Uniform distribution 
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Triangular Distributed Samples 

103 samples 104 samples 

106 samples 105 samples 
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1. Algorithm sample_normal_distribution(b): 
  

2. return   

Sampling from a normal dist. 

Corresponds to 12-step 
random walk / 12th order 
Irwin-Hall distribution: 
 
 
 
Source: wikipedia 
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Normally Distributed Samples 

106 

samples 



Sample Odometry Motion Model 
1. Algorithm sample_motion_model(u, x):  

 
 

2.   
3.   
4.   

 
5.   
6.   
7.   

  
8. return   

sample_normal_distribution 
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Examples for Odometry Model 
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Consecutive Samples 

start 
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3. Velocity-based model 
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Dead Reckoning 

▪ Procedure for determining the location of a vehicle 
▪ Calculates the current pose based on its velocities 

and the elapsed time 
▪ Historically used to estimate the position of ships 

▪ A “chip log” was thrown into the water 
▪ Attached to a rope with knots at known intervals 
▪ The number of knots that went overboard in a 

fixed time was used to determine the velocity 

Source: 
Wikipedia 
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Velocity-Based Model 

θ-90 



▪ The hypothesis for the true motion is given by the 
measurement plus noise: 

 
 
 
 
 
 

▪ What is a limitation of this parameterization? 
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Noise Parameterization 

▪ The       -circle constrains the final orientation (2D 
manifold in a 3D space) 
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Noise Parameterization 

▪ Add a parameter to account for an uncertainty in 
the final rotation: 
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Center of circle: 

Distance to the ICC = radius of the circle λ = v/ω 
 
Note: center of the circle is orthogonal to the initial 
heading 

Calculate Final Pose from the 
Velocities 



Calculate Final Pose from the 
Velocities 
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Center of circle: 

Final pose: 
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Calculate Velocities from Poses 

Center of circle: 

Some constant μ to be determined. 
 
The center of the circle lies on a ray 
halfway between x and x’ that is 
orthogonal to the line between x and x’ 
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Calculate Velocities from Poses 

Center of circle: 

Allows to solve for μ: 



Calculate Velocities from Poses 

Parameters of the circle arc: 
 
 
 
 
Allows for computing the velocities: 
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The Posterior p(x’|x, u) 
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Sampling from Velocity Model 



Examples for Velocity Model 
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4. Rejection sampling 
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How to Sample from Arbitrary f? 



▪ First, sample from uniform distributions: 
▪ x in [-b, b] 
▪ y in [0, max f ] 

▪ if f (x) > y   keep the sample x  
otherwise reject it  
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(x, y) (x’, y’) 

accepted rejected 

Answer: Rejection Sampling 
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1. Algorithm sample_distribution( f , b ):  
2. repeat 
3.    
4.   
5. until 
6. return 

Rejection Sampling Algorithm 
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5. Map-consistent motion 



Map-Consistent Motion Model 
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Solid wall 

≠ ≠ 
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Questions? 
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