Introduction to Mobile Robotics

Probabilistic Motion Models

Daniel Büscher

Robot Motion

- Robot motion is inherently uncertain
- How can we model this uncertainty?

Dynamic Bayesian Network

Models dependencies of controls, states, and measurements

Probabilistic Motion Models

- To implement the Bayes Filter, we need the transition model $p(x_t \mid x_{t-1}, u_t)$
- It specifies a posterior probability that action u_t carries the robot from x_{t-1} to x_t
- In this section we will discuss how this "motion model" can be calculated using
 - the motion equations and
 - the uncertain outcome of the movements

Coordinate Systems

- The configuration of a wheeled robot in 3D can be described by six parameters:
 - three Cartesian coordinates x, y, z
 - three Euler angles for roll, pitch, and yaw
- For simplicity, we consider robots operating on a planar surface
- Reduced state space: three-dimensional (x, y, θ)

Typical Motion Models

- Odometry-based
 - Used if wheel encoders are available
 - Based on the measured wheel revolutions
 - Uncertainty from wheel slippage, ...
- Velocity-based ("dead reckoning")
 - Can be applied without wheel encoders
 - Typically based on a velocity control command
- Additional uncertainty from actuation precision
 Both calculate the new pose using the elapsed time

Content

- **1. Odometry model:** calculate posterior p(x'|x,u)
- **2. Sampling:** draw an x' according to the posterior
- 3. Velocity-based model: posterior and sampling
- 4. Rejection sampling: samples from arbitrary dist.
- 5. Map-consistent motion: considering obstacles

1. Odometry model

Example Wheel Encoders

- Disks fixed to wheels
- Typically plastic with black/white transitions
- Enable wheel encoder sensors to easily detect transitions

Modules provide

- +5V output when they "see" white
- OV output when they "see" black

Source: www.active-robots.com

Typical Motion Errors

ideal case

different wheel diameters

and many more ...

Odometry Model

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

$$\delta_{trans} \qquad \langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$$

The atan2 Function

- The tan function is periodic in (-π/2, π/2), hence its inverse (atan) covers only half a circle
- The atan2 function extends atan to the full circle
- Correctly copes with signs and zeros of x and y

$$\operatorname{atan}(y,x) = \begin{cases} \operatorname{atan}(y/x) & \text{if } x > 0\\ \operatorname{sign}(y) (\pi - \operatorname{atan}(|y/x|)) & \text{if } x < 0\\ 0 & \text{if } x = y = 0\\ \operatorname{sign}(y) \pi/2 & \text{if } x = 0, y \neq 0 \end{cases}$$

Noise Model for Odometry

- The measured motion is given by the true motion corrupted with noise
- Since we don't have access to the true motion, we can write

Typical Distributions for Probabilistic Motion Models

Normal distribution

Triangular distribution

Calculating the Probability Densities (zero-centered)

- For a triangular distribution
 - 1. Algorithm **prob_triangular_distribution**(*a*,*b*):

2. return max
$$\left\{0, \frac{1}{\sqrt{6} b} - \frac{|a|}{6 b^2}\right\}$$

The Posterior p(x'|x, u)

1. Algorithm motion_model_odometry
$$(x, x') \overline{x}, \overline{x'}$$

2. $\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$
3. $\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$
4. $\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$
5. $\delta_{trans} = \sqrt{(x' - x)^2 + (y' - y)^2}$
6. $\delta_{rot1} = \operatorname{atan2}(y' - y, x' - x) - \theta$
7. $\delta_{rot2} = \theta' - \theta - \delta_{rot1}$
8. $p_1 = \operatorname{prob}(\delta_{rot1} - \delta_{rot1}, \alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$
9. $p_2 = \operatorname{prob}(\delta_{trans} - \delta_{trans}, \alpha_3 \delta_{trans} + \alpha_4(|\delta_{rot1}| + |\delta_{rot2}|))$
10. $p_3 = \operatorname{prob}(\delta_{rot2} - \delta_{rot2}, \alpha_1 | \delta_{rot2} | + \alpha_2 \delta_{trans})$
11. return $p_1 \cdot p_2 \cdot p_3$ prop_normal_distribution

Typical outcome

- Repeated application of the motion model for short movements:
- Banana-shaped distributions for the 2d-projection of the 3d posterior

2. Sampling

Sample-Based Density Representation

Sampling from a triangular dist.

1. Algorithm **sample_triangular_distribution**(*b*):

2. return
$$\frac{\sqrt{6}}{2}$$
 [rand $(-b,b)$ + rand $(-b,b)$]
Uniform distribution

Common example: sum of two dice

Triangular Distributed Samples

10³ samples

10⁴ samples

10⁶ samples

Sampling from a normal dist.

1. Algorithm **sample_normal_distribution**(*b*):

2. return
$$\frac{1}{2} \sum_{i=1}^{12} rand(-b, b)$$

Corresponds to 12-step random walk / 12th order Irwin-Hall distribution:

Source: wikipedia

Normally Distributed Samples

Sample Odometry Motion Model

1. Algorithm **sample_motion_model**(u, x):

$$u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle, x = \langle x, y, \theta \rangle$$

2.
$$\hat{\delta}_{rot1} = \delta_{rot1} + \operatorname{sample}(\alpha_1 | \delta_{rot1} | + \alpha_2 \delta_{trans})$$

3. $\hat{\delta}_{trans} = \delta_{trans} + \operatorname{sample}(\alpha_3 \delta_{trans} + \alpha_4 (| \delta_{rot1} | + | \delta_{rot2} |))$
4. $\hat{\delta}_{rot2} = \delta_{rot2} + \operatorname{sample}(\alpha_1 | \delta_{rot2} | + \alpha_2 \delta_{trans})$
5. $x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$ sample_normal_distribution
6. $y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$
7. $\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$

8. return $\langle x', y', \theta' \rangle$

Examples for Odometry Model

Consecutive Samples

3. Velocity-based model

Dead Reckoning

- Procedure for determining the location of a vehicle
- Calculates the current pose based on its velocities and the elapsed time
- Historically used to estimate the position of ships
 - A "chip log" was thrown into the water
 - Attached to a rope with knots at known intervals
 - The number of knots that went overboard in a fixed time was used to determine the velocity

Source: Wikipedia

Velocity-Based Model

Noise Parameterization

 The hypothesis for the true motion is given by the measurement plus noise:

$$\hat{v} = v + \varepsilon_{\alpha_1 |v| + \alpha_2 |\omega|}$$
$$\hat{\omega} = \omega + \varepsilon_{\alpha_3 |v| + \alpha_4 |\omega|}$$

- What is a limitation of this parameterization?
- The (v̂, ŵ)-circle constrains the final orientation (2D manifold in a 3D space)

Noise Parameterization

 Add a parameter to account for an uncertainty in the final rotation:

$$\hat{v} = v + \varepsilon_{\alpha_{1}|v| + \alpha_{2}|\omega|}$$
$$\hat{\omega} = \omega + \varepsilon_{\alpha_{3}|v| + \alpha_{4}|\omega|}$$
$$\hat{\gamma} = \varepsilon_{\alpha_{5}|v| + \alpha_{6}|\omega|}$$

Calculate Final Pose from the Velocities

Center of circle:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix}$$

Distance to the ICC = radius of the circle $\lambda = v/\omega$

Note: center of the circle is orthogonal to the initial heading

Calculate Final Pose from the Velocities

Center of circle:

$$\left(\begin{array}{c} x^* \\ y^* \end{array}\right) = \left(\begin{array}{c} x \\ y \end{array}\right) + \left(\begin{array}{c} -\lambda \sin \theta \\ \lambda \cos \theta \end{array}\right)$$

Final pose:

$$\begin{aligned} x' &= x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega}\Delta t) \\ y' &= y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t) \\ \theta' &= \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t \end{aligned}$$

Calculate Velocities from Poses

Center of circle:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix}$$

Some constant μ to be determined.

The center of the circle lies on a ray halfway between x and x' that is orthogonal to the line between x and x'

Calculate Velocities from Poses

Center of circle:

$$\begin{pmatrix} x^* \\ y^* \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -\lambda \sin \theta \\ \lambda \cos \theta \end{pmatrix} = \begin{pmatrix} \frac{x+x'}{2} + \mu(y-y') \\ \frac{y+y'}{2} + \mu(x'-x) \end{pmatrix}$$

Allows to solve for μ :

$$\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$$

Calculate Velocities from Poses

Parameters of the circle arc:

$$r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$$

$$\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$$

Allows for computing the velocities:

$$v = \frac{\Delta\theta}{\Delta t}r^*$$
$$\omega = \frac{\Delta\theta}{\Delta t}$$

The Posterior p(x'|x, u)

1: Algorithm motion_model_velocity(
$$x_t, u_t, x_{t-1}$$
): $x_{t-1} = (x, y, \theta)^T$
2: $\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$ $x_t = (x', y', \theta')^T$
3: $x^* = \frac{x + x'}{2} + \mu(y - y')$
4: $y^* = \frac{y + y'}{2} + \mu(x' - x)$
5: $r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$
6: $\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$
7: $\hat{v} = \frac{\Delta \theta}{\Delta t} r^*$
8: $\hat{\omega} = \frac{\Delta \theta}{\Delta t}$
9: $\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$
10: return prob $(v - \hat{v}, \alpha_1 v^2 + \alpha_2 \omega^2) + \operatorname{prob}(\omega - \hat{\omega}, \alpha_3 v^2 + \alpha_4 \omega^2) + \operatorname{prob}(\hat{\gamma}, \alpha_5 v^2 + \alpha_6 \omega^2)$

Sampling from Velocity Model

1: **Algorithm sample_motion_model_velocity(** u_t , x_{t-1} **):**

2:
$$\hat{v} = v + \operatorname{sample}(\alpha_1 v^2 + \alpha_2 \omega^2)$$

3: $\hat{\omega} = \omega + \operatorname{sample}(\alpha_3 v^2 + \alpha_4 \omega^2)$
4: $\hat{\gamma} = \operatorname{sample}(\alpha_5 v^2 + \alpha_6 \omega^2)$
5: $x' = x - \frac{\hat{v}}{\hat{\omega}} \sin \theta + \frac{\hat{v}}{\hat{\omega}} \sin(\theta + \hat{\omega}\Delta t)$
6: $y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t)$
7: $\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$
8: return $x_t = (x', y', \theta')^T$

Examples for Velocity Model

4. Rejection sampling

How to Sample from Arbitrary f?

Answer: Rejection Sampling

- First, sample from uniform distributions:
 - *x* in [-*b*, *b*]
 - *y* in [0, max *f*]
- if f(x) > y keep the sample x otherwise
 reject it

Rejection Sampling Algorithm

- 1. Algorithm **sample_distribution**(*f*, *b*):
- 2. repeat

3.
$$x = \operatorname{rand}(-b, b)$$

- 4. $y = rand(0, max\{f(x) \mid x \in [-b, b]\})$
- 5. until $y \leq f(x)$
- 6. return x

5. Map-consistent motion

Map-Consistent Motion Model

 $p(x'|u,x) \neq p(x'|u,x,m) \neq p(x'|u,x)$

Questions?