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 Recall: Discrete filter

 Discretize the continuous state space

 High memory complexity

 Fixed resolution (does not adapt to the belief)

 Particle filters are a way to efficiently represent 

non-Gaussian distribution

 Basic principle

 Set of state hypotheses (“particles”)

 Survival-of-the-fittest

Motivation



Sample-based Localization (sonar)
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 Set of weighted samples

Mathematical Description

 The samples represent the posterior

State hypothesis Importance weight
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 Particle sets can be used to approximate functions

Function Approximation

 The more particles fall into an interval, the higher 

the probability of that interval

 How to draw samples from a function/distribution?
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 Measurement update

Bayes filter with particle sets

 Motion update
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 Let us assume that f(x)< a for all x

 Sample x from a uniform distribution

 Sample c from [0,a]

 if f(x) > c keep the sample

otherwise reject the sample

Rejection Sampling
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 We can even use a different distribution g to 

generate samples from f

 By introducing an importance weight w, we can 

account for the “differences between g and f ”

 w = f / g

 f is called target

 g is called proposal

 Pre-condition:

f(x)>0  g(x)>0

 Derivation: See 

webpage

Importance Sampling Principle



Importance Sampling with Resampling:
Landmark Detection Example



Distributions
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Distributions

Wanted: samples distributed according to 
p(x| z1, z2, z3)



This is Easy!

We can draw samples from p(x|zl) by adding 
noise to the detection parameters.



Importance Sampling

Target distribution f : p(x | z1, z2,..., zn ) =

p(zk | x) p(x)
k

Õ

p(z1, z2,..., zn )

Sampling distribution g: p(x | zl ) =
p(zl | x)p(x)

p(zl )

Importance weights w: 
f

g
=
p(x | z1, z2,..., zn )

p(x | zl )
=

p(zl ) p(zk | x)
k¹l

Õ

p(z1, z2,..., zn )



Importance Sampling with 
Resampling

Weighted samples After resampling



Particle Filters
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Sensor Information: Importance Sampling



Bel-(x) ¬ p(x |u, x ')Bel(x ') d x 'ò

Robot Motion



Bel(x) ¬ a p(z | x) Bel-(x)

w ¬
a p(z | x) Bel-(x)

Bel-(x)
= a p(z | x)

Sensor Information: Importance Sampling



Robot Motion

Bel-(x) ¬ p(x |u, x ')Bel(x ') d x 'ò



20

Particle Filter Algorithm

 Sample the next generation for particles using the 

proposal distribution

 Compute the importance weights :

weight = target distribution / proposal distribution

 Resampling: “Replace unlikely samples by more 

likely ones”
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1. Algorithm particle_filter( St-1, ut, zt):

2.

3. For Generate new samples

4. Sample index j(i) from the discrete distribution given by wt-1

5. Sample     from                       using          and

6. Compute importance weight

7. Update normalization factor

8. Add to new particle set

9. For

10. Normalize weights

Particle Filter Algorithm

0,  tS

i =1,… ,n

St = St È{< xt
i,wt

i >}

h =h +wt
i

xt
i

p(xt | xt-1,ut ) xt-1

j (i)
ut

wt
i = p(zt | xt

i )

i =1,… ,n

wt
i =wt

i /h



draw xi
t1 from Bel(xt1)

draw xi
t from p(xt | x

i
t1,ut)

Importance factor for xi
t:

wt
i =

target distribution

proposal distribution

=
h p(zt | xt ) p(xt | xt-1,ut ) Bel (xt-1)

p(xt | xt-1,ut ) Bel (xt-1)

µ p(zt | xt )

Bel(xt ) = h p(zt | xt ) p(xt | xt-1,ut ) Bel(xt-1)ò dxt-1

Particle Filter Algorithm



Resampling

 Given: Set S of weighted samples.

 Wanted : Random sample, where the 
probability of drawing xi is given by wi.

 Typically done n times with replacement to 
generate new sample set S’.



w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

 Roulette wheel

 Binary search, n log n

 Stochastic universal sampling

 Systematic resampling

 Linear time complexity

 Easy to implement, low variance



1. Algorithm systematic_resampling(S,n):

2.

3. For Generate cdf

4.

5. Initialize threshold

6. For Draw samples …

7. While (            ) Skip until next threshold reached

8.

9. Insert

10. Increment threshold

11. Return S’

Resampling Algorithm

1
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Also called stochastic universal sampling
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Mobile Robot Localization

 Each particle is a potential pose of the robot

 Proposal distribution is the motion model of 

the robot (prediction step)

 The observation model is used to compute 

the importance weight (correction step)

[For details, see PDF file on the lecture web page]



Motion Model Reminder

start pose

end pose

According to the estimated motion



Motion Model Reminder

rotation

translation

rotation

 Decompose the motion into

 Traveled distance

 Start rotation

 End rotation



Motion Model Reminder

 Uncertainty in the translation of the robot:
Gaussian over the traveled distance

 Uncertainty in the rotation of the robot:
Gaussians over start and end rotation

 For each particle, draw a new pose by sampling 
from these three individual normal distributions



Start

Motion Model Reminder



Proximity Sensor Model Reminder

Laser sensor Sonar sensor
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Mobile Robot Localization Using 
Particle Filters (1)

 Each particle is a potential pose of the robot

 The set of weighted particles approximates 

the posterior belief about the robot’s pose 

(target distribution)
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Mobile Robot Localization Using 
Particle Filters (2)

 Particles are drawn from the motion model 

(proposal distribution)

 Particles are weighted according to the 

observation model (sensor model)

 Particles are resampled according to the 

particle weights
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Mobile Robot Localization Using 
Particle Filters (3)

Why is resampling needed?

 We only have a finite number of particles

 Without resampling: The filter is likely to 

loose track of the “good” hypotheses

 Resampling ensures that particles stay in 

the meaningful area of the state space
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Sample-based Localization (sonar)
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Initial Distribution
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After Incorporating Ten 
Ultrasound Scans
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After Incorporating 65 Ultrasound 
Scans
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Estimated Path
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Localization for AIBO robots



Using Ceiling Maps for Localization

[Dellaert et al. 99]



Vision-based Localization

P(z|x)

h(x)

z



Under a Light

Measurement z: P(z|x):



Next to a Light

Measurement z: P(z|x):



Elsewhere

Measurement z: P(z|x):



Global Localization Using Vision



Vision-based Localization
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Limitations

 The approach described so far is able  

 to track the pose of a mobile robot and 

 to globally localize the robot

 How can we deal with localization errors 
(i.e., the kidnapped robot problem)?
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Approaches

 Randomly insert a fixed number of 
samples with randomly chosen poses 

 This corresponds to the assumption that 
the robot can be teleported at any point in 
time to an arbitrary location

 Alternatively, insert such samples inverse 
proportional to the average likelihood of 
the observations (the lower this likelihood 
the higher the probability that the current 
estimate is wrong).
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Summary – Particle Filters

 Particle filters are an implementation of 
recursive Bayesian filtering

 They represent the posterior by a set of 
weighted samples

 They can model arbitrary and thus also 
non-Gaussian distributions

 Proposal to draw new samples

 Weights are computed to account for the 
difference between the proposal and the 
target

 Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter
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Summary – PF Localization

 In the context of localization, the particles 
are propagated according to the motion 
model.

 They are then weighted according to the 
likelihood model (likelihood of the 
observations).

 In a re-sampling step, new particles are 
drawn with a probability proportional to the 
likelihood of the observation. 

 This leads to one of the most popular 
approaches to mobile robot localization 


