Introduction to Mobile Robotics Bayes Filter – Extended Kalman Filter

Daniel Büscher

Bayes Filter Reminder

$$bel(x_t) = \eta \ p(z_t | x_t) \int p(x_t | u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

• Prediction $\overline{bel}(x_t) = \int p(x_t | u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

Correction

$$bel(x_t) = \eta p(z_t \mid x_t) \overline{bel}(x_t)$$

Discrete Kalman Filter

Estimates the state *x* of a discrete-time controlled process

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t$$

with a measurement

$$z_t = C_t x_t + \delta_t$$

Nonlinear Dynamic Systems

 Most realistic robotic problems involve nonlinear functions

$$x_t = A_t x_{t-1} + B_t u_t + \varepsilon_t \implies x_t = g(u_t, x_{t-1})$$

$$z_t = \varepsilon_t x_t + \delta_t \qquad \Longrightarrow \quad z_t = h(x_t)$$

Linear Fn: Gaussian preserved

Non-Linear Function

Non-Gaussian Distributions

- Non-linear functions lead to non-Gaussian distributions
- The Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!

1. Linearization

EKF Linearization: First Order Taylor Expansion

Prediction:

$$g(u_{t}, x_{t-1}) \approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1})$$
$$= g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1})$$

• Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$= h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

Jacobian matrices: linear functions!

Jacobian Matrix

- Non-square $n \times m$ in general
- Given a vector-valued function

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

it is defined as

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Jacobian Matrix interpretation

It is the orientation of the tangent plane to the vector-valued function at a given point

 Generalizes the gradient of a scalar-valued function

Non-Linear Function

EKF Linearization (1)

EKF Linearization (2)

EKF Linearization (3)

2. EKF Algorithm

Reminder: KF Algorithm

1. Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

Prediction:

$$2. \quad \mu_t = A_t \mu_{t-1} + B_t u_t$$

$$\mathbf{3.} \quad \Sigma_t = A_t \Sigma_{t-1} A_t^T + Q$$

Correction:

4.
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + R_t)^{-1}$$

5. $\mu = \mu + K (z - C \mu)$

5.
$$\mu_t = \mu_t + K_t (z_t - C_t \mu_t)$$

$$\mathbf{6}. \quad \boldsymbol{\Sigma}_t = (I - K_t C_t) \boldsymbol{\Sigma}_t$$

7. Return μ_t , Σ_t

EKF Algorithm

1. Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:

2.
$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$

3. $\overline{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + Q_t$

Correction:

4.
$$K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + R_t)^{-1}$$

5. $\mu_t = \overline{\mu}_t + K_t (z_t - h(\overline{\mu}_t))$

$$\mathbf{6}. \quad \boldsymbol{\Sigma}_t = (I - K_t H_t) \boldsymbol{\Sigma}_t$$

7. Return μ_t , Σ_t

Kalman_filter:

$$\overline{\mu}_t = A_t \mu_{t-1} + B_t u_t$$

$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + Q_t$$

$$K_{t} = \overline{\Sigma}_{t} C_{t}^{T} (C_{t} \overline{\Sigma}_{t} C_{t}^{T} + R_{t})^{-1}$$

$$\mu_{t} = \mu_{t} + K_{t} (z_{t} - C_{t} \mu_{t})$$

$$\Sigma_{t} = (I - K_{t} C_{t}) \overline{\Sigma}_{t}$$

$$G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} \qquad H_t = \frac{\partial h(\overline{\mu}_t)}{\partial x_t}$$

3. EKF Example

Example: EKF Localization

EKF localization with landmarks (point features)

1. EKF_localization ($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, m$):

Prediction:
2.
$$G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial \mu_{t-1}} = \begin{pmatrix} \frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,y}} \\ \frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,y}} \\ \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} \end{pmatrix}$$
Jacobian of g w.r.t location
3. $V_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial u_{t}} = \begin{pmatrix} \frac{\partial x'}{\partial v_{t}} & \frac{\partial t'}{\partial u_{t}} \\ \frac{\partial y'}{\partial v_{t}} & \frac{\partial y'}{\partial u_{t}} \\ \frac{\partial \theta'}{\partial v_{t}} & \frac{\partial \theta'}{\partial u_{t}} \end{pmatrix}$
Jacobian of g w.r.t control
4. $Q_{t} = \begin{pmatrix} (\alpha_{1} | v_{t} | + \alpha_{2} | \omega_{t}))^{2} & 0 \\ 0 & (\alpha_{3} | v_{t} | + \alpha_{4} | \omega_{t}) \end{pmatrix}^{2} \end{pmatrix}$
Motion noise
5. $\overline{\mu}_{t} = g(u_{t}, \mu_{t-1})$
Predicted mean
6. $\overline{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + V_{t} Q_{t} V_{t}^{T}$
Predicted covariance (V_{t})

EKF Prediction Step

Correction:

(EKF_localization continued)

7.
$$\hat{z}_{t} = \begin{pmatrix} \sqrt{(m_{x} - \bar{\mu}_{t,x})^{2} + (m_{y} - \bar{\mu}_{t,y})^{2}} \\ \operatorname{atan} 2(m_{y} - \bar{\mu}_{t,y}, m_{x} - \bar{\mu}_{t,x}) - \bar{\mu}_{t,\theta} \end{pmatrix}$$
 Predicted mean $h(\mu)$
8. $H_{t} = \frac{\partial h(\bar{\mu}_{t}, m)}{\partial x_{t}} = \begin{pmatrix} \frac{\partial r_{t}}{\partial \bar{\mu}_{t,x}} & \frac{\partial r_{t}}{\partial \bar{\mu}_{t,y}} & \frac{\partial r_{t}}{\partial \bar{\mu}_{t,\theta}} \\ \frac{\partial \phi_{t}}{\partial \bar{\mu}_{t,x}} & \frac{\partial \phi_{t}}{\partial \bar{\mu}_{t,y}} & \frac{\partial \phi_{t}}{\partial \bar{\mu}_{t,\theta}} \end{pmatrix}$ Jacobian location
9. $R_{t} = \begin{pmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{e}^{2} \end{pmatrix}$ Measurements
10. $S_{t} = H_{t} \bar{\Sigma}_{t} H_{t}^{T} + R_{t}$ Innovation
11. $K_{t} = \bar{\Sigma}_{t} H_{t}^{T} S_{t}^{-1}$ Kalman gain
12. $\mu_{t} = \bar{\mu}_{t} + K_{t} (z_{t} - \hat{z}_{t})$ Updated means $L_{t} = (I - K_{t} H_{t}) \bar{\Sigma}_{t}$

neasurement $= Z = (r, \Phi)^{\mathsf{T}}$

of h w.r.t

ent noise

covariance

in

lean

ovariance

EKF Observation Prediction

EKF Correction Step

Localization Sequence

EKF Summary

- The Extended Kalman Filter is an ad-hoc solution to deal with non-linearities
- Performs local linearization in each step
- Works well in practice for moderate non-linearities (example: landmark localization)
- It is optimal if the measurement and the motion model are both linear (reduces to the KF)
- There exist better ways for dealing with nonlinearities, such as the unscented Kalman filter