Introduction to Mobile Robotics

Grid Maps and Mapping with Known Poses

Lukas Luft

1

Why Mapping?

- Learning maps is one of the fundamental problems in mobile robotics
- Maps allow robots to efficiently carry out their tasks, allow localization ...
- Successful robot systems rely on maps for localization, path planning, activity planning etc.

The General Problem of Mapping

What does the environment look like?

The General Problem of Mapping

Formally, mapping involves, given the sensor data

$$d = \{u_1, z_1, u_2, z_2, \dots, u_t, z_t\}$$

to calculate the most likely map

$$m^{\star} = \operatorname{argmax}_{m} P(m \mid d)$$

The General Problem of Mapping

Formally, mapping involves, given the sensor data

$$d = \{u_1, z_1, u_2, z_2, \dots, u_t, z_t\}$$

to calculate the most likely map

$$m^{\star} = \operatorname{argmax}_{m} P(m \mid d)$$

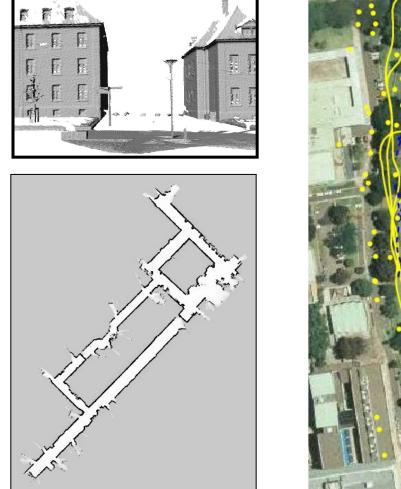
 How to calculate map given robot's poses?

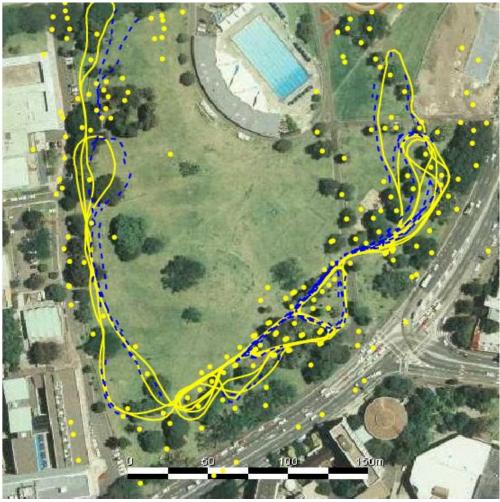
The General Problem of Mapping with Known Poses

- Formally, mapping with known poses involves, given the measurements and the poses $d = \{x_1, z_1, x_2, z_2, \dots, x_t, z_t\}$

• to calculate the mast likely $m^* = \operatorname{argmax}_m P(m \mid d)^{3p}$

Features vs. Volumetric Maps

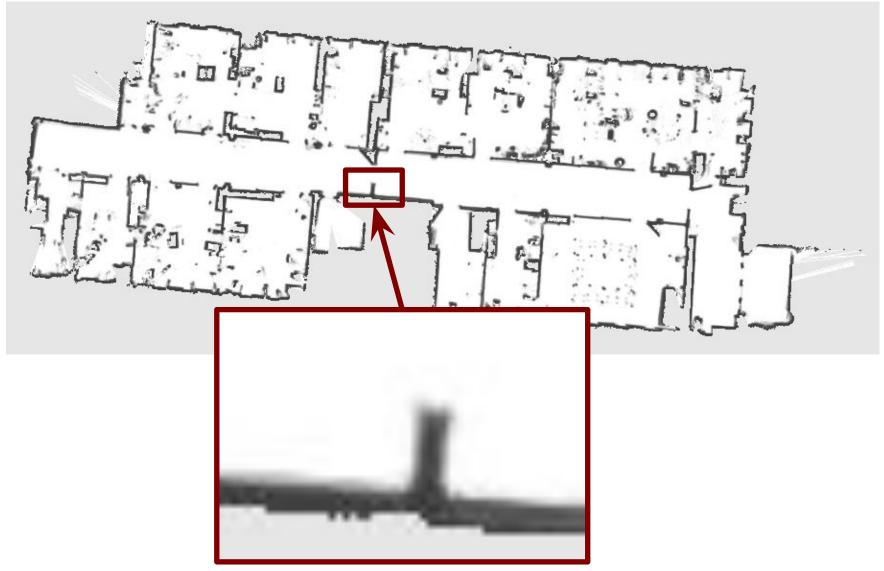




Courtesy by E. Nebot 7

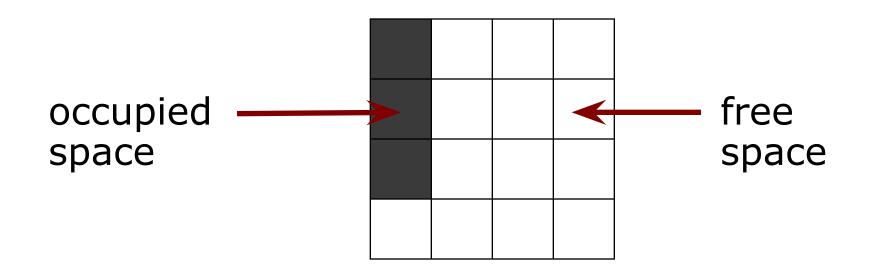
Grid Maps

- We discretize the world into cells
- The grid structure is rigid
- Each cell is assumed to be occupied or free
- It is a non-parametric model
- It requires substantial memory resources
- It does not rely on a feature detector



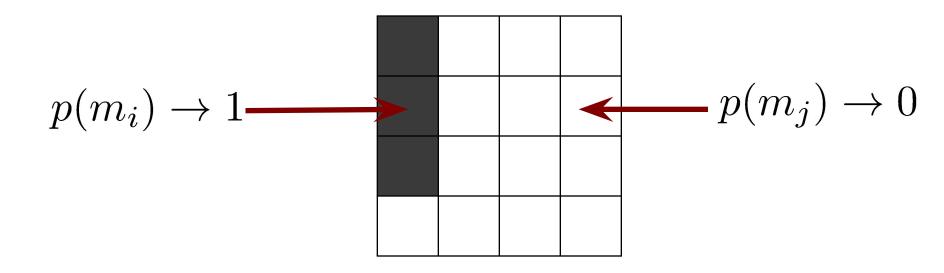
Assumption 1

 The area that corresponds to a cell is either completely free or occupied



Representation

Each cell is a binary random variable that models the occupancy



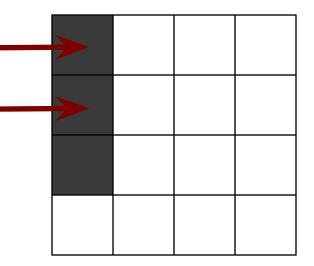
Occupancy Probability

- Each cell is a binary random variable that models the occupancy
- We know that the cell is $\operatorname{occ} p(m_i) = 1$
- ... is not occupie $p(m_i) = 0$
- No informatior $p(m_i) = 0.5$
- The environment is assumed to be static

Assumption 2

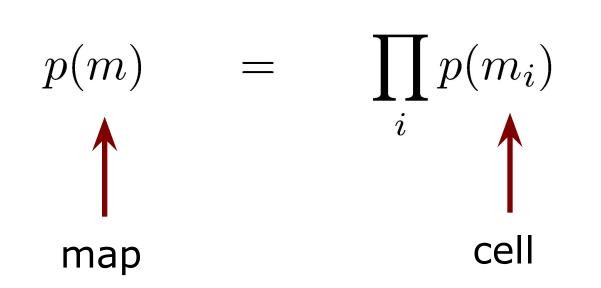
The cells (the random variables) are independent of each other

no dependency between the cells



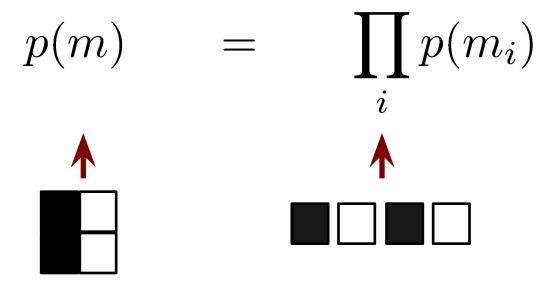
Representation

 The probability distribution of the map is given by the product of the probability distributions of the individual cells



Representation

 The probability distribution of the map is given by the product of the probability distributions of the individual cells



four-dimensional four independent vector cells

Estimating a Map From Data

Given sensor data z_{1:t} and the poses
 x_{1:t} of the sensor, estimate the map

$$p(m \mid z_{1:t}, x_{1:t}) = \prod_{i} p(m_i \mid z_{1:t}, x_{1:t})$$

binary random variable

Estimating a Map From Data

Note that

$$p(m \mid z_{1:t}, x_{1:t}) = \prod p(m_i \mid z_{1:t}, x_{1:t})$$

is an even stronger assumption than

$$p(m) = \prod p(m_i)$$

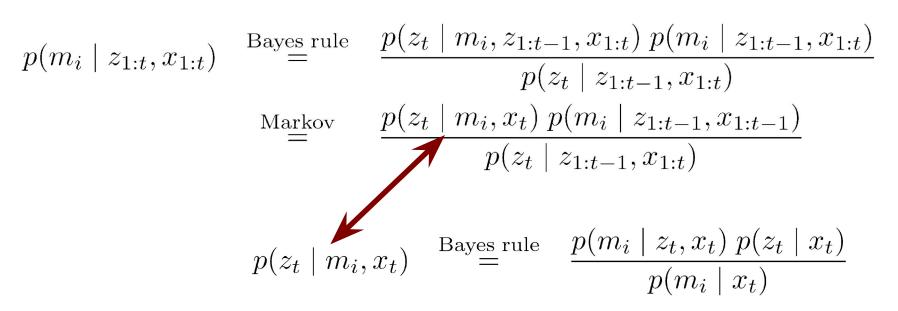
i

because measurements induce correlations between cells (especially for sonar). We have to use these (obviously false) assumptions for computational feasibility.

 $p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$
$$\stackrel{\text{Markov}}{=} \frac{p(z_t \mid m_i, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

 The first assumption is actually only justified when conditioning on the full map not just m_i. People use it here, nevertheless.



 Defining a forward sensor model conditioned on only one cell is impossible, therefore, we use Bayes rule again to apply an (heuristic) inverse sensor model.

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_t \mid m_i, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i \mid x_t) \ p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}$$

Do exactly the same for the opposite event:

 $p(\neg m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{the same}}{=} \frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t})}$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{\frac{p(m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t-1})}}{\frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t-1})}}$$

 By computing the ratio of both probabilities, we obtain:

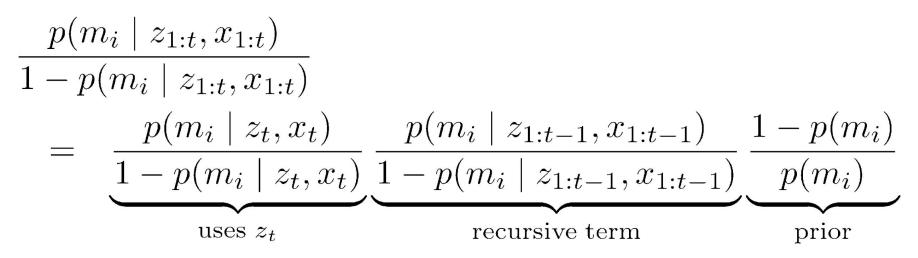
$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \frac{p(m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}{1 - p(m_i \mid z_t, x_t)} \frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \underbrace{\frac{p(m_i \mid z_t, x_t)}{1 - p(m_i \mid z_t, x_t)}}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}}$$

Occupancy Update Rule

Recursive rule



Occupancy Update Rule

Recursive rule

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \underbrace{\frac{p(m_i \mid z_t, x_t)}{1 - p(m_i \mid z_t, x_t)}}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})}}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i)}{p(m_i)}}_{\text{prior}}$$
• Often written as

$$Bel(m_t^i) = \left[1 + \frac{1 - p(m_t^i \mid z_t, x_t)}{p(m_t^i \mid z_t, x_t)} \frac{p(m_t^i)}{1 - p(m_t^i)} \frac{1 - Bel(m_{t-1}^i)}{Bel(m_{t-1}^i)}\right]^{-1}$$

Log Odds Notation

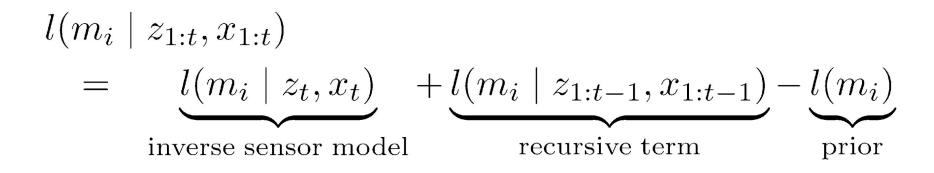
Log odds ratio is defined as

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

• and with the ability to retrieve p(x) $p(x) = 1 - \frac{1}{1 + \exp l(x)}$

Occupancy Mapping in Log Odds Form

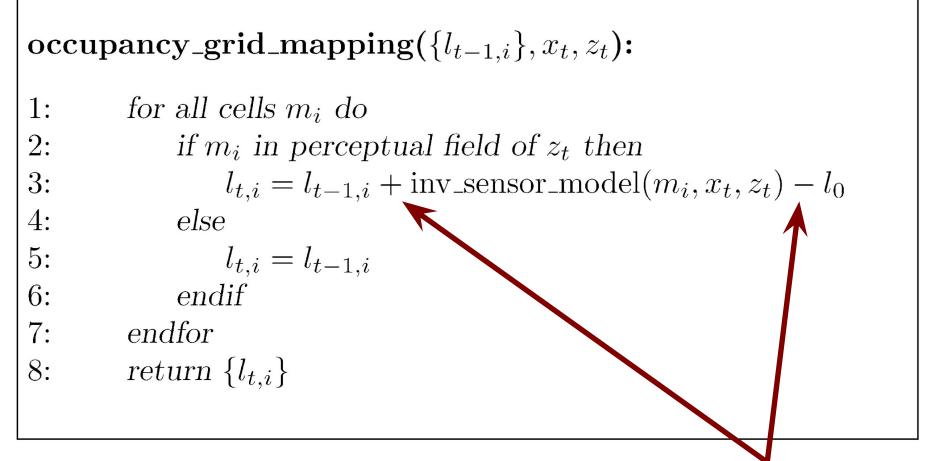
The product turns into a sum



or in short

 $l_{t,i} = \text{inv_sensor_model}(m_i, x_t, z_t) + l_{t-1,i} - l_0$

Occupancy Mapping Algorithm

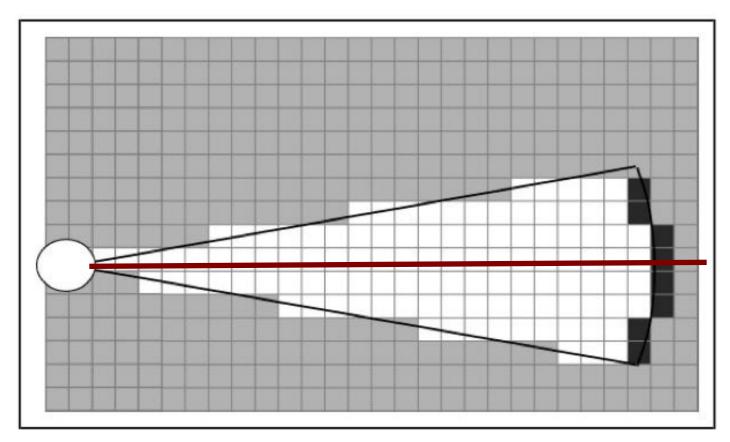


highly efficient, only requires to compute sums

Occupancy Grid Mapping

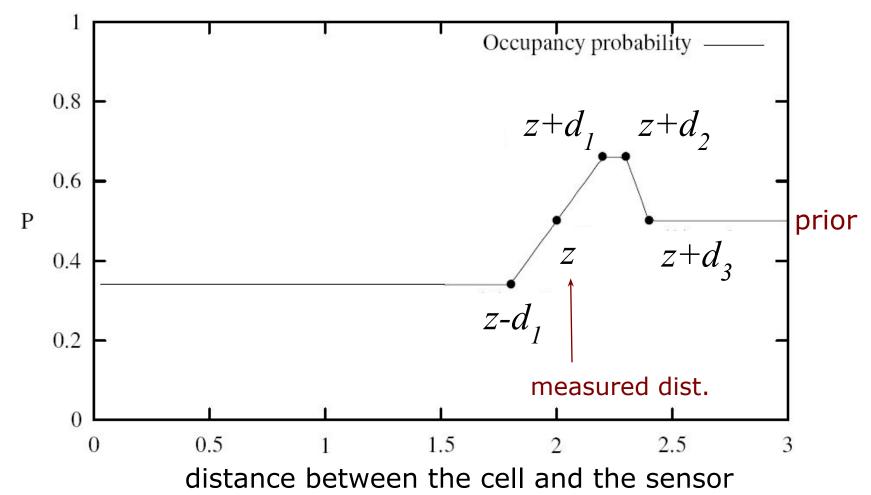
- Developed in the mid 80's by Moravec and Elfes
- Originally developed for noisy sonars
- Also called "mapping with know poses"

Inverse Sensor Model for Sonars Range Sensors

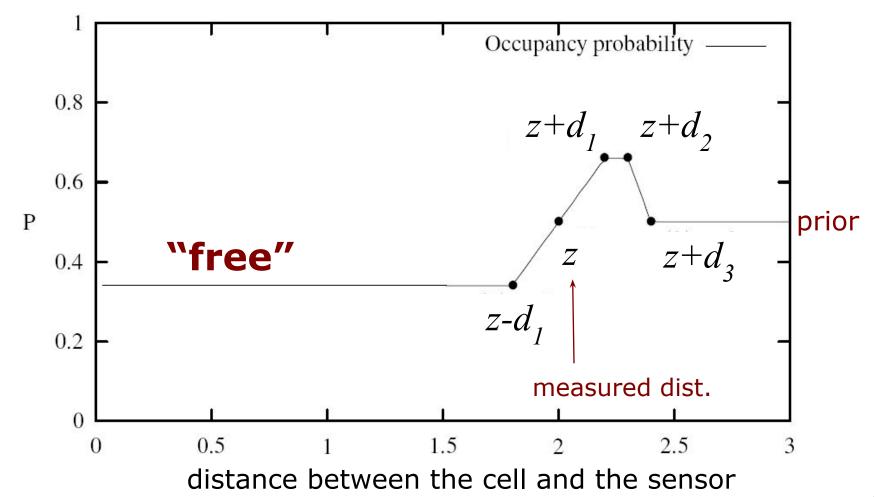


In the following, consider the cells along the optical axis (red line)

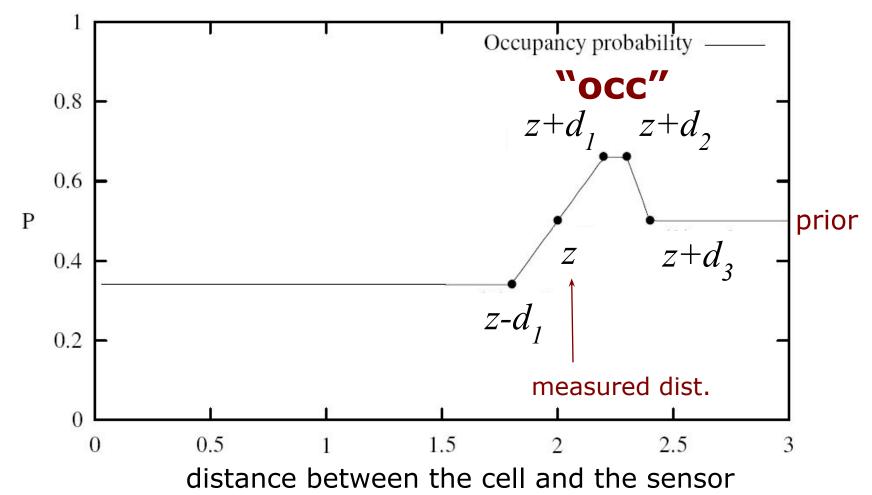
Occupancy Value Depending on the Measured Distance



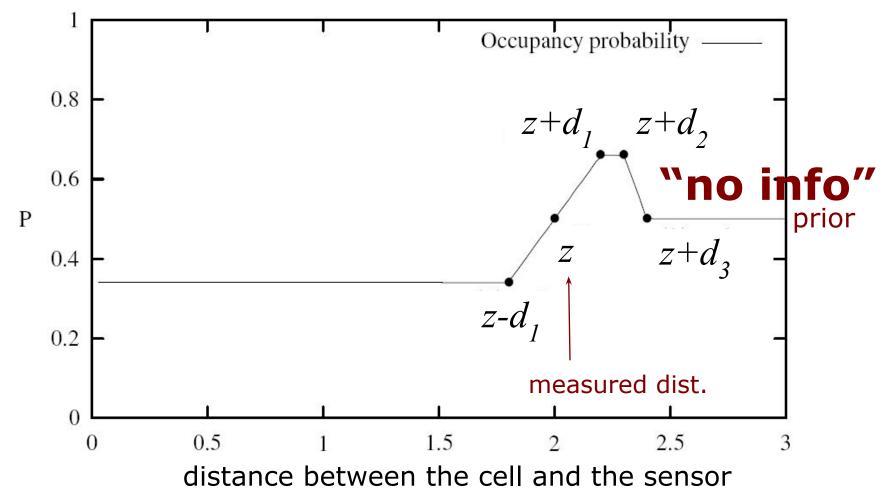
Occupancy Value Depending on the Measured Distance



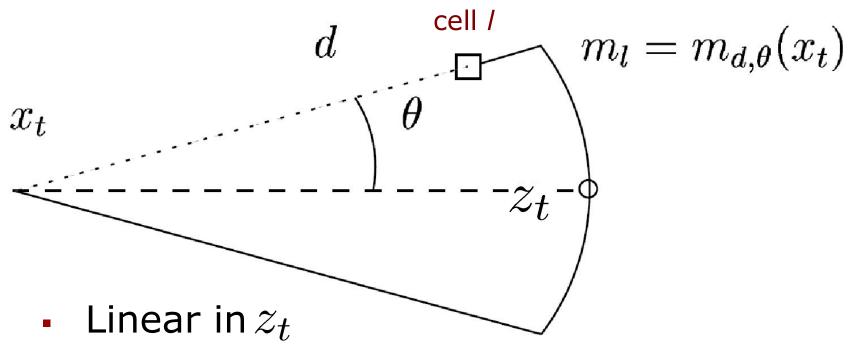
Occupancy Value Depending on the Measured Distance



Occupancy Value Depending on the Measured Distance

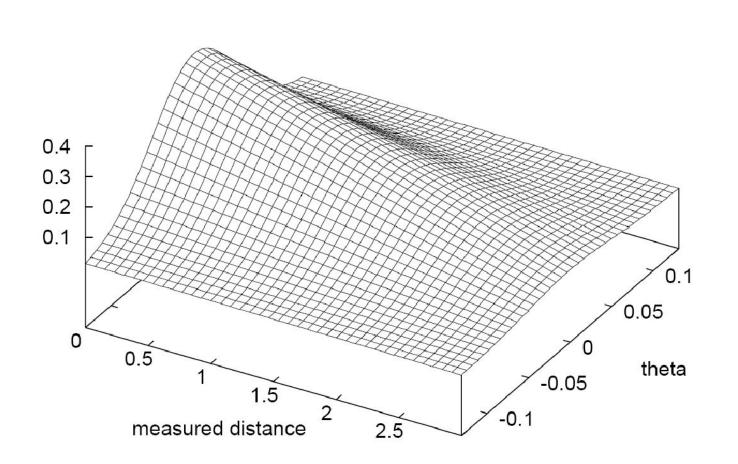


Update depends on the Measured Distance and Deviation from the Optical Axis



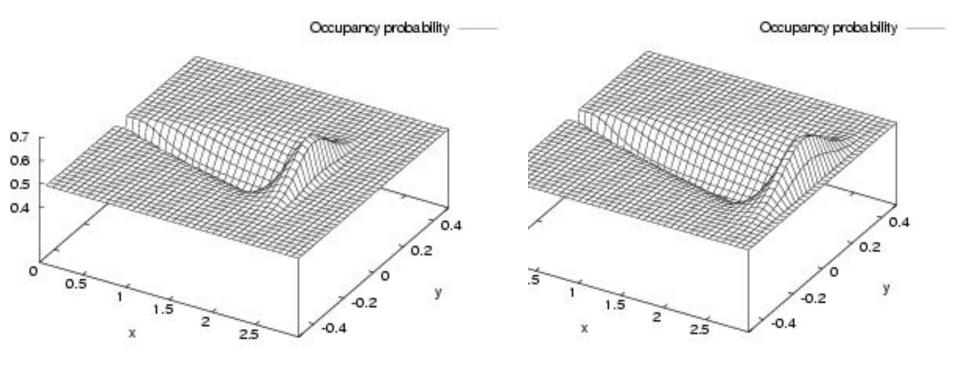
- Gaussian in θ

Intensity of the Update



S

Resulting Model $p(m_i | z_t, x_t)$

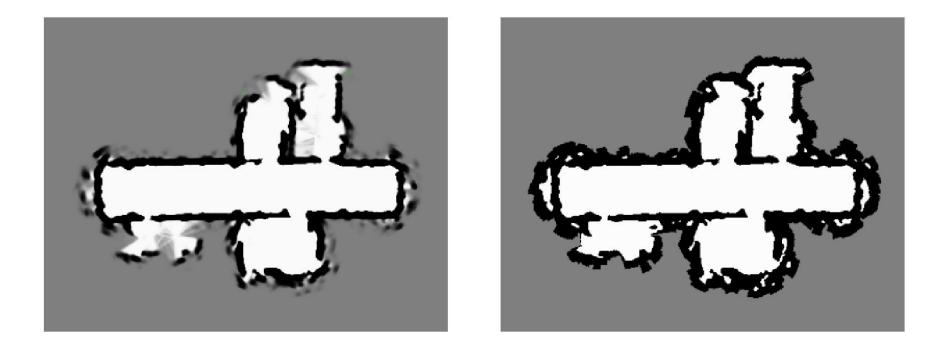


Example: Incremental Updating of Occupancy Grids

1	+		+	X	+			
	+		+	<u>)</u>	+)		
	+	2)	+	(a)	+	2		
	+	2	+	. 2)	+	.25)		
	+	<u>(25</u>)	+	.2)	+	(15 ⁾		
	+	2)	+	<u>e</u>)	+	<u>2</u> ()	\rightarrow	1

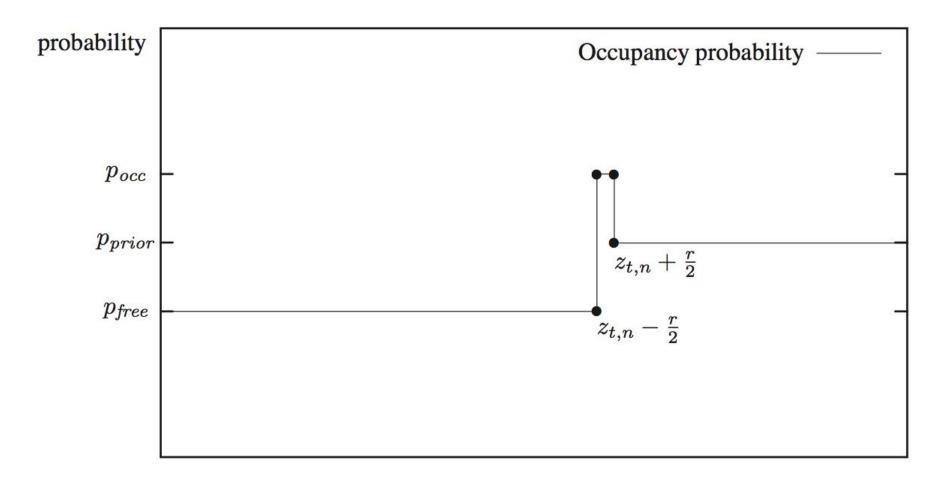
Resulting Map Obtained with Ultrasound Sensors

Resulting Occupancy and Maximum Likelihood Map



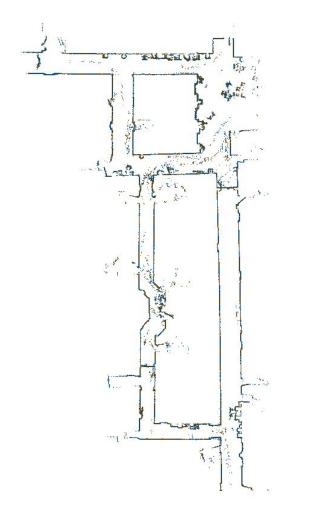
The maximum likelihood map is obtained by rounding the probability for each cell to 0 or 1.

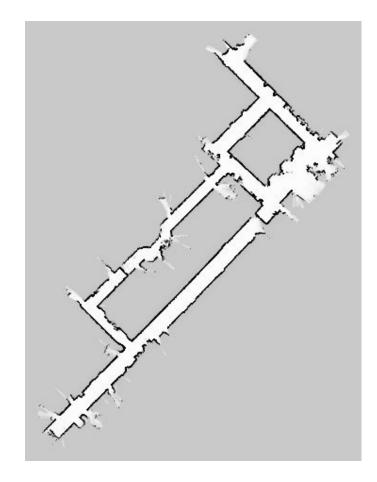
Inverse Sensor Model for Laser Range Finders



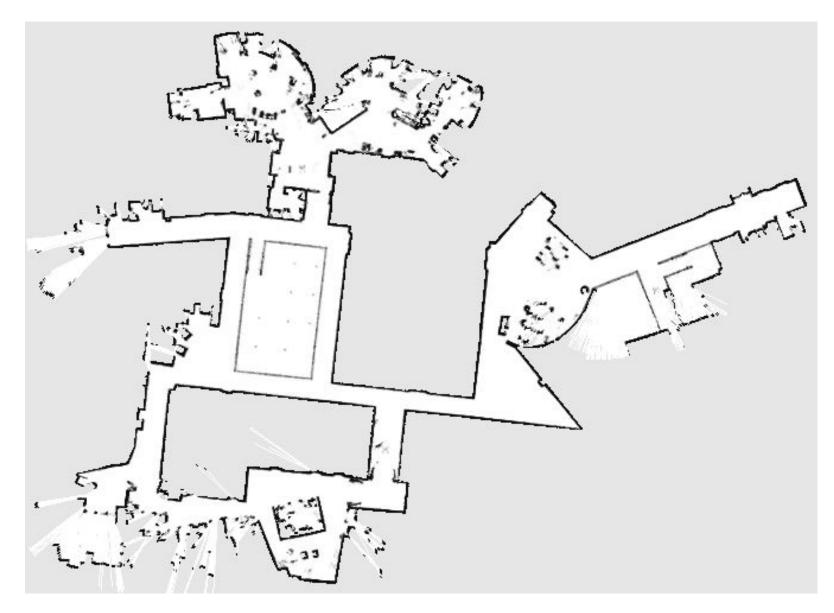
distance between sensor and cell under consideration

Occupancy Grids From Laser Scans to Maps

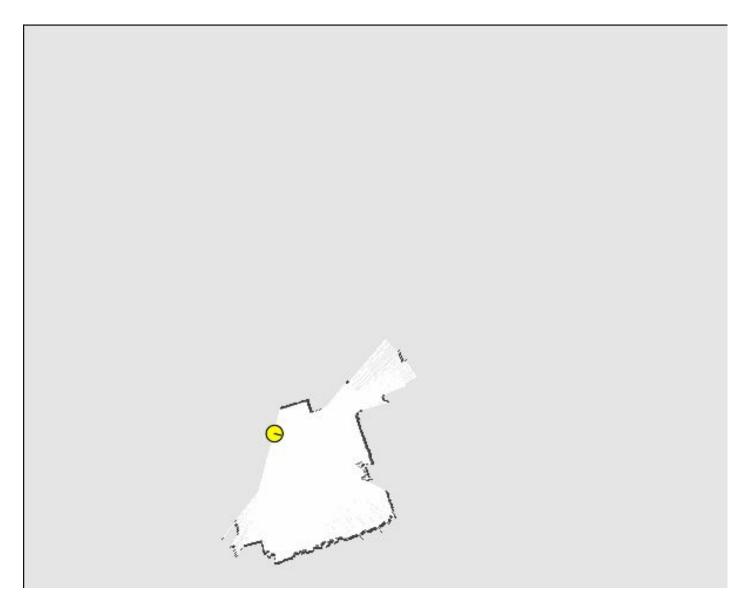




Example: MIT CSAIL 3rd Floor



Uni Freiburg Building 106



Summary OGM

- Grid maps are a popular model for representing the environment
- Occupancy grid maps discretize the space into independent cells, where each cell is a binary random variable estimating if the cell is occupied.
- We efficiently estimate the state of every cell using a binary Bayes filter
- The log odds model is fast to compute
- False independence assumptions are used. More consistent approaches are ongoing research.