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Why Mapping?

▪ Learning maps is one of the 
fundamental problems in mobile 
robotics

▪ Maps allow robots to efficiently carry 
out their tasks, allow localization …

▪ Successful robot systems rely on maps 
for localization, path planning, activity 
planning etc.
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The General Problem of 
Mapping

What does the 
environment look like?
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The General Problem of 
Mapping

▪ Formally, mapping involves, given the 
sensor data 

▪ to calculate the most likely map
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The General Problem of 
Mapping

▪ Formally, mapping involves, given the 
sensor data 

▪ to calculate the most likely map

▪ How to calculate map given 
robot’s poses?
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The General Problem of 
Mapping with Known Poses

▪ Formally, mapping with known poses 
involves, given the measurements and 
the poses 

▪ to calculate the most likely map
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Features vs. Volumetric Maps

Courtesy by E. Nebot
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Grid Maps

▪ We discretize the world into cells
▪ The grid structure is rigid 
▪ Each cell is assumed to be occupied or 
free
▪ It is a non-parametric model
▪ It requires substantial memory 
resources
▪ It does not rely on a feature detector
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Example
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Assumption 1

▪ The area that corresponds to a cell is 
either completely free or occupied

free 
space

occupied
space
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Representation

▪ Each cell is a binary random 
variable that models the occupancy
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Occupancy Probability

▪ Each cell is a binary random 
variable that models the occupancy
▪ We know that the cell is occupied:
▪ … is not occupied:
▪ No information
▪ The environment is assumed to be 

static
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Assumption 2

▪ The cells (the random variables) are 
independent of each other

no dependency
between the cells
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Representation
▪ The probability distribution of the map is 

given by the product of the probability 
distributions of the individual cells

cellmap
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Representation
▪ The probability distribution of the map is 

given by the product of the probability 
distributions of the individual cells

four-dimensional 
vector

four independent
cells
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Estimating a Map From Data

▪ Given sensor data z1:t and the poses 
x1:t of the sensor, estimate the map

binary random variable

Binary Bayes filter
(for a static state)
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Estimating a Map From Data

Note that

is an even stronger assumption than

because measurements induce 
correlations between cells (especially 
for sonar). We have to use these 
(obviously false) assumptions for 
computational feasibility.
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Static State Binary Bayes Filter
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Static State Binary Bayes Filter

▪ The first assumption is actually only 
justified when conditioning on the full 
map not just mi. People use it here, 
nevertheless.
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Static State Binary Bayes Filter

▪ Defining a forward sensor model 
conditioned on only one cell is 
impossible, therefore, we use Bayes 
rule again to apply an (heuristic) 
inverse sensor model.
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Static State Binary Bayes Filter
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Static State Binary Bayes Filter
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Static State Binary Bayes Filter

Do exactly the same for the opposite event: 
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Static State Binary Bayes Filter

▪ By computing the ratio of both 
probabilities, we obtain:
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Static State Binary Bayes Filter

▪ By computing the ratio of both 
probabilities, we obtain:
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Static State Binary Bayes Filter

▪ By computing the ratio of both 
probabilities, we obtain:
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Occupancy Update Rule

▪ Recursive rule
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Occupancy Update Rule

▪ Recursive rule

▪ Often written as
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Log Odds Notation

▪ Log odds ratio is defined as

▪ and with the ability to retrieve 
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Occupancy Mapping 
in Log Odds Form
▪ The product turns into a sum

▪ or in short
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Occupancy Mapping Algorithm

highly efficient, only requires to compute sums
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Occupancy Grid Mapping

▪ Developed in the mid 80’s by Moravec 
and Elfes
▪ Originally developed for noisy sonars
▪ Also called “mapping with know poses”
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Inverse Sensor Model for 
Sonars Range Sensors

In the following, consider the cells 
along the optical axis (red line)
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Occupancy Value Depending on 
the Measured Distance

z+d1 z+d2

z+d3z

z-d1
measured dist.

prior

distance between the cell and the sensor



35

z+d1 z+d2

z+d3z

z-d1

Occupancy Value Depending on 
the Measured Distance

measured dist.

prior
“free”

distance between the cell and the sensor
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z+d1 z+d2

z+d3z

z-d1

Occupancy Value Depending on 
the Measured Distance

distance between the cell and the sensor

measured dist.

prior

“occ”
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Occupancy Value Depending on 
the Measured Distance

z+d1 z+d2

z+d3z

z-d1
measured dist.

prior
“no info”

distance between the cell and the sensor
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Update depends on the 
Measured Distance and 
Deviation from the Optical Axis 

cell l

▪ Linear in 
▪ Gaussian in 
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Intensity of the Update
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Resulting Model 
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Example: Incremental Updating 
of Occupancy Grids 
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Resulting Map Obtained with 
Ultrasound Sensors
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Resulting Occupancy and 
Maximum Likelihood Map

The maximum likelihood map is obtained by 
rounding the probability for each cell to 0 or 1. 
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Inverse Sensor Model for Laser 
Range Finders
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Occupancy Grids
From Laser Scans to Maps 
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Example: MIT CSAIL 3rd Floor
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Uni Freiburg Building 106
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Summary OGM
▪ Grid maps are a popular model for 
representing the environment 
▪ Occupancy grid maps discretize the 
space into independent cells, where 
each cell is a binary random variable 
estimating if the cell is occupied.
▪ We efficiently estimate the state of 
every cell using a binary Bayes filter
▪ The log odds model is fast to compute
▪ False independence assumptions are 
used. More consistent approaches are 
ongoing research.


