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What is SLAM?

= Estimate the pose of a robot and the map of
the environment at the same time

= SLAM is hard, because

= a map is needed for localization and
= a good pose estimate is needed for mapping

= Localization: inferring location given a
map

= Mapping: inferring a map given locations

= SLAM: |learning a map and locating the
robot simultaneously



The SLAM Problem

= SLAM has long been regarded as a
chicken-or-egg problem:
— a map is needed for localization and
— a pose estimate is needed for mapping




SLAM Applications

= SLAM is central to a range of indoor,
outdoor, in-air and underwater applications
for both manned and autonomous vehicles.

Examples:

= At home: vacuum cleaner, lawn mower

= Air: surveillance with unmanned air vehicles
= Underwater: reef monitoring

= Underground: exploration of mines

= Space: terrain mapping for localization



SLAM Applications
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Map Representations

Examples: Subway map, city map,
landmark-based map
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Maps are topological and/or metric
models of the environment



Map Representations in Robotics

= Grid maps or scans, 2d, 3d N

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99;
Haehnel, 01; Grisetti et al., 05; ...]

* Landmark-based
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The SLAM Problem

» SLAM is considered a fundamental

problems for robots to become truly
autonomous

= Large variety of different SLAM
approaches have been developed

= The majority uses probabilistic
concepts

= History of SLAM dates back to the
mid-eighties



Feature-Based SLAM

Given:
= The robot’ s controls
Ul:k :{u17u27"'7uk} .
= Relative observations
Zix ={z1,22,..., 21} .
Wanted: .
= Map of features .
m = {mq,mo,..., my,}

= Path of the robot
Xl:k — {mla L2,..., mk}



Feature-Based SLAM

= Absolute
robot poses

= Absolute
landmark e e e
positions e

Features and Landmarks ﬁ’

Vehicle-Feature Relative
Observation

= But only
relative
measurements
of landmarks

Mobile Vehicle

Global Reference Frame
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Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated
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Why is SLAM a hard problem?

= The mapping between observations and
landmarks is unknown

= Picking wrong data associations can have
catastrophic consequences (divergence)
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SLAM: Simultaneous
Localization And Mapping

= Full SLAM:
p(XO:t’m | Z1:t’ul:t)

Estimates entire path and map!

= Online SLAM:
p(Xt’ m | Z1:t ] u1:t) — jj . I p(xl:t , M | Z1:t ] ul:t)dxldXZ"'dXt—l

Estimates most recent pose and map!

= Integrations (marginalization) typically

done recursively, one at a time 3



Graphical Model of Full SLAM

p(xl:t+1’ m ‘ Zl:t+1’ ul:t+1)




Graphical Model of Online SLAM

P(Xesrs M Zigy Upgir) = jjj P(Xegyrr M Zygyg) Upg,y JAX AX,. . .0X,
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Motion and Observation Model

LTt = f(mt—laut)

"Motion model"

"Observation model"
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Remember the KF Algorithm

Algorithm Kalman_filter(u.;, %;.;, U, Z;):

Prediction:

;7 Am,+Bu,
St AS AT+R

tt-1

A WN =

Correction:
K, ==C/ (C,ZC/ +Q)™
m=m +Kt(Zt - Ctﬂ?)
S =(I- KC)S

O 0N U

Return p,, Z;
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EKF SLAM: State representation

= Localization

2 2 2
g g o

3x1 pose vector Tk g Yzy T

] X = Yl Ek — ny Jy OyQ

3x3 cov. matrix 0, 02, o2, o2

= SLAM
Landmarks simply extend the state.
Growing state vector and covariance matrix!
[ Xp | [ Xp YrM, XRM, ‘' XRM, |
m; YM\R XM, XM M, XM, M,
x; = | M2 Y, = | 2M:R LMoM, XM, XMaM,

m,, | XM,R XM, M, XM,M, ' 2M,



EKF SLAM: State representation

= Map with n landmarks: (3+2n)-dimensional

Gaussian

= Can handle hundreds of dimensions
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EKF SLAM: Filter Cycle

. State prediction (odometry)

. Measurement prediction

. Measurement

. Data association

. Update

. Integration of new landmarks

A U1 A W DN =



EKF SLAM: Filter Cycle

. State prediction (odometry)

. Measurement prediction

. Measurement

. Data association

. Update

. Integration of new landmarks

A U1 A W DN =



EKF SLAM: State Prediction

Odometry:

* )ACR — f(XRJ 'l].)
Yp=FXrF! +F,UF’

Robot-landmark cross-
covariance prediction:

2RM7; = F22p,

XR ER ZRMl ZRMn

100 %] ZMlR ZMl ZMan
m, | | XM, R 2M, M, XM,
S———" ~~ o




EKF SLAM: Measurement

Prediction
a Global-to-local

frame transform h

Zr = h(Xg)

Xp 2 RM,,

m; 2i My M,
1y, | i ZMnR ZMan ZMn _
S—— N ~~ d




EKF SLAM: Obtained
Measurement

(X,y)-point landmarks

o :
. o Y1 | 27
- “k = L2 - [ Zy
| Y2 _
"R, O
R. =
“T 10 R2]
2R 2RM, YRM,
XMR XM, YN, M,
2M,R M, M, XM, |
>
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EKF SLAM: Data Association

Associates predlcted

measurements z;
with observatlon z;,
~ 2 -2
XR R ZRMl .« . ERMn
100 %] ZMlR ZMl ZMan
m, | | Ym,R XM, M XM,
S——— ~~ o




EKF SLAM: Update Step

The usual Kalman
filter expressions

Ky = i]kHTSk:_l
X = X + Ki vy

>.RM,
2 My M,




EKF SLAM: New Landmarks

2R 2RM,
MR 2 M,
XM, R XM, M,

State augmented by
my, 1 = g(Xr,2;)
ZMn+1 = GRERGE + GZRJGZ

Cross-covariances:

M, M; = GRERM,
M, R = GRYR

2 RM, 2 RM, s
XM M,  5My M,

ZMn EMnMn—I—l
ZMn+1Mn Z-Zw'n—l—l




EKF SLAM

Map

Correlation matrix
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EKF SLAM

Map

Correlation matrix
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EKF SLAM

Correlation matrix

Map



EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?
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EKF SLAM: Correlations Matter

= What if we neglected cross-correlations?

[ Yp 0 0
0 ZMl S 0 ERM&- — 03)(2
dip =
: : ) : EM@Mi_F]_ — 02)(2
i 0 0 zMn |

= Landmark and robot uncertainties would
pecome overly optimistic

= Data association would fail
= Multiple map entries of the same landmark
= Inconsistent map
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SLAM: Loop Closure

= Recognizing an already mapped area,
typically after a long exploration path (the
robot “closes a loop”)

= Structurally identical to data association,
but
= high levels of ambiguity
= possibly useless validation gates
= environment symmetries

= Uncertainties collapse after a loop closure
(whether the closure was correct or not)
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SLAM: Loop Closure

= Before loop closure
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SLAM: Loop Closure

= After loop closure
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SLAM: Loop Closure

= By revisiting already mapped areas,
uncertainties in robot and landmark
estimates can be reduced

= This can be exploited when exploring an
environment for the sake of better (e.q.
more accurate) maps

= Exploration: the problem of where to
acquire new information

— See separate chapter on exploration
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KF-SLAM Properties
(Linear Case)

= The determinant of any sub-matrix of the map
covariance matrix decreases monotonically as
successive observations are made

2t | = When a new land-
mark is initialized,
its uncertainty is

maximal

_
tn
T

Standard Deviation in X (m)

1 " Landmark
uncertainty
decreases

I | ) monotonically
with each new

. observation
110
Time (se0) [Dissanayake et al., 2001] 41



KF-SLAM Properties
(Linear Case)

= In the limit, the landmark estimates
become fully correlated

[Dissanayake et al., 2001] 4>



KF-SLAM Properties
(Linear Case)

= In the limit, the covariance associated with
any single landmark location estimate is
determined only by the initial covariance
in the vehicle location estimate.

v
> = &
"

[Dissanayake et al., 2001] 43




EKF SLAM Example:
Victoria Park Dataset
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Victoria Park: Data Acquisition

¥

[courtesy by E. Nebot]
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Victoria Park: Estimated
Trajectory
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Victoria Park: Landmarks

[courtesy by E. Nebot]
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EKF SLAM Example: Tennis
Court

[courtesy by J. Leonard]



EKF SLAM Example: Tennis

Court

odometry
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[courtesy by John Leonard] 49



EKF SLAM Example: Line

Features
= KTH Bakery Data Set " | :\
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EKF-SLAM: Complexity

= Cost per step: quadratic in n, the
number of l[andmarks: O(n?)

= Total cost to build a map with n
landmarks: O(n3)

= Memory consumption: O(n?2)

= Problem: becomes computationally
intractable for large maps!

= There exists variants to circumvent
these problems
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SLAM Techniques

= EKF SLAM
= FastSLAM
= Graph-based SLAM

= Topological SLAM
(mainly place recognition)

= Scan Matching / Visual Odometry
(only locally consistent maps)

= Approximations for SLAM: Local submaps,
Sparse extended information filters, Sparse
links, Thin junction tree filters, etc.
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EKF-SLAM: Summary

» The first SLAM solution

= Convergence proof for linear Gaussian
case

= Can diverge if nonlinearities are large
(and the real world is nonlinear ...)

= Can deal only with a single mode
= Successful in medium-scale scenes

= Approximations exists to reduce the
computational complexity
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