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What is SLAM?

 Estimate the pose of a robot and the map of 
the environment at the same time

 SLAM is hard, because
 a map is needed for localization and 

 a good pose estimate is needed for mapping

 Localization: inferring location given a 
map 

 Mapping: inferring a map given locations

 SLAM: learning a map and locating the 
robot simultaneously



The SLAM Problem

 SLAM has long been regarded as a 
chicken-or-egg problem:
→ a map is needed for localization and 

→ a pose estimate is needed for mapping
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SLAM Applications

 SLAM is central to a range of indoor, 
outdoor, in-air and underwater applications 
for both manned and autonomous vehicles.

Examples:

 At home: vacuum cleaner, lawn mower

 Air: surveillance with unmanned air vehicles

 Underwater: reef monitoring

 Underground: exploration of mines

 Space: terrain mapping for localization
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SLAM Applications
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Indoors

Space

Undersea

Underground



Map Representations

Examples: Subway map, city map, 
landmark-based map
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Maps are topological and/or metric 
models of the environment



Map Representations in Robotics

 Grid maps or scans, 2d, 3d

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; 

Haehnel, 01; Grisetti et al., 05; …]

 Landmark-based
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[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…



The SLAM Problem

 SLAM is considered a fundamental 
problems for robots to become truly 
autonomous

 Large variety of different SLAM 
approaches have been developed

 The majority uses probabilistic 
concepts

 History of SLAM dates back to the 
mid-eighties
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Feature-Based SLAM 

Given:

 The robot’s controls

 Relative observations

Wanted:

 Map of features

 Path of the robot
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Feature-Based SLAM

 Absolute
robot poses

 Absolute
landmark 
positions

 But only 
relative 
measurements 
of landmarks
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Why is SLAM a hard problem?
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1. Robot path and map are both unknown

2. Errors in map and pose estimates correlated



Why is SLAM a hard problem?

 The mapping between observations and 
landmarks is unknown

 Picking wrong data associations can have 
catastrophic consequences (divergence)
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Robot pose

uncertainty



SLAM: Simultaneous 
Localization And Mapping

 Full SLAM:

 Online SLAM:

 Integrations (marginalization) typically 
done recursively, one at a time
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Graphical Model of Full SLAM 
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Graphical Model of Online SLAM 
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Motion and Observation Model
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"Motion model"

"Observation model"



Remember the KF Algorithm 

1. Algorithm Kalman_filter(mt-1, St-1, ut, zt):

2. Prediction:

3.

4.

5. Correction:

6.

7.

8.

9. Return mt, St
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EKF SLAM: State representation

 Localization

3x1 pose vector

3x3 cov. matrix

 SLAM

Landmarks simply extend the state. 

Growing state vector and covariance matrix!
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 Map with n landmarks: (3+2n)-dimensional 
Gaussian

 Can handle hundreds of dimensions

EKF SLAM: State representation
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EKF SLAM: Filter Cycle

1. State prediction (odometry)

2. Measurement prediction

3. Measurement

4. Data association

5. Update

6. Integration of new landmarks



EKF SLAM: Filter Cycle
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EKF SLAM: State Prediction

Odometry:

Robot-landmark cross-
covariance prediction:



EKF SLAM: Measurement 
Prediction

Global-to-local 
frame transform h



EKF SLAM: Obtained 
Measurement

(x,y)-point landmarks



EKF SLAM: Data Association

Associates predicted 
measurements
with observation

?



EKF SLAM: Update Step

The usual Kalman 
filter expressions 



EKF SLAM: New Landmarks

State augmented by

Cross-covariances:



EKF SLAM
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Map              Correlation matrix



EKF SLAM
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Map              Correlation matrix



EKF SLAM
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Map              Correlation matrix



 What if we neglected cross-correlations?

EKF SLAM: Correlations Matter
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EKF SLAM: Correlations Matter

 What if we neglected cross-correlations?

 Landmark and robot uncertainties would 
become overly optimistic

 Data association would fail

 Multiple map entries of the same landmark

 Inconsistent map
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SLAM: Loop Closure

 Recognizing an already mapped area, 
typically after a long exploration path (the 
robot “closes a loop”)

 Structurally identical to data association, 
but

 high levels of ambiguity

 possibly useless validation gates

 environment symmetries

 Uncertainties collapse after a loop closure 
(whether the closure was correct or not)
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SLAM: Loop Closure

 Before loop closure
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SLAM: Loop Closure

 After loop closure
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SLAM: Loop Closure

 By revisiting already mapped areas, 
uncertainties in robot and landmark 
estimates can be reduced

 This can be exploited when exploring an 
environment for the sake of better (e.g. 
more accurate) maps

 Exploration: the problem of where to 
acquire new information

→ See separate chapter on exploration
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KF-SLAM Properties 
(Linear Case)

 The determinant of any sub-matrix of the map 
covariance matrix decreases monotonically as 
successive observations are made

41[Dissanayake et al., 2001]

 When a new land-
mark is initialized,
its uncertainty is 
maximal

 Landmark 
uncertainty 
decreases 
monotonically 
with each new 
observation



KF-SLAM Properties 
(Linear Case)

 In the limit, the landmark estimates 
become fully correlated

42[Dissanayake et al., 2001]



KF-SLAM Properties 
(Linear Case)

 In the limit, the covariance associated with 
any single landmark location estimate is 
determined only by the initial covariance 
in the vehicle location estimate.

43[Dissanayake et al., 2001]



EKF SLAM Example: 
Victoria Park Dataset
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Victoria Park: Data Acquisition

45[courtesy by E. Nebot]



Victoria Park: Estimated 
Trajectory

46[courtesy by E. Nebot]



Victoria Park: Landmarks

47[courtesy by E. Nebot]



EKF SLAM Example: Tennis 
Court

48[courtesy by J. Leonard]



EKF SLAM Example: Tennis 
Court
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odometry estimated trajectory

[courtesy by John Leonard]



EKF SLAM Example: Line 
Features
 KTH Bakery Data Set

50[Wulf et al., ICRA 04]



EKF-SLAM: Complexity

 Cost per step: quadratic in n, the 
number of landmarks: O(n2)

 Total cost to build a map with n 
landmarks: O(n3)

 Memory consumption: O(n2)

 Problem: becomes computationally 
intractable for large maps!

 There exists variants to circumvent 
these problems

51



SLAM Techniques

 EKF SLAM

 FastSLAM

 Graph-based SLAM

 Topological SLAM
(mainly place recognition)

 Scan Matching / Visual Odometry
(only locally consistent maps)

 Approximations for SLAM: Local submaps, 
Sparse extended information filters, Sparse 
links, Thin junction tree filters, etc.

 …
52



EKF-SLAM: Summary

 The first SLAM solution

 Convergence proof for linear Gaussian 
case

 Can diverge if nonlinearities are large
(and the real world is nonlinear ...)

 Can deal only with a single mode

 Successful in medium-scale scenes

 Approximations exists to reduce the 
computational complexity
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