Introduction to Mobile Robotics

SLAM – Landmark-based FastSLAM

Kshitij Sirohi

Partial slide courtesy of Mike Montemerlo

The SLAM Problem

- SLAM stands for simultaneous localization and mapping
- The task of building a map while estimating the pose of the robot relative to this map

- Why is SLAM hard? Chicken-or-egg problem:
 - A map is needed to localize the robot
 - A pose estimate is needed to build a map

The SLAM Problem

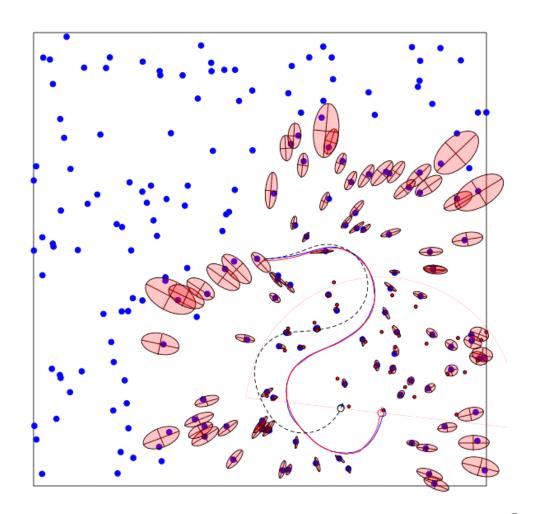
A robot moving through an unknown, static environment

Given:

- The robot's controls
- Observations of nearby features

Estimate:

- Map of features
- Path of the robot



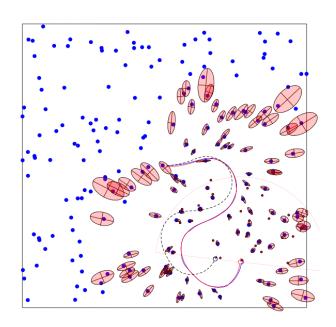
Map Representations

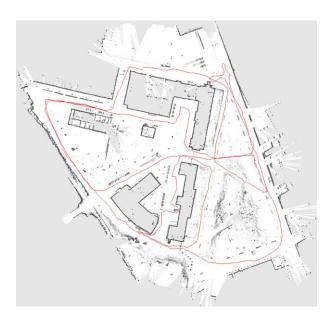
Typical models are:

Feature maps

today

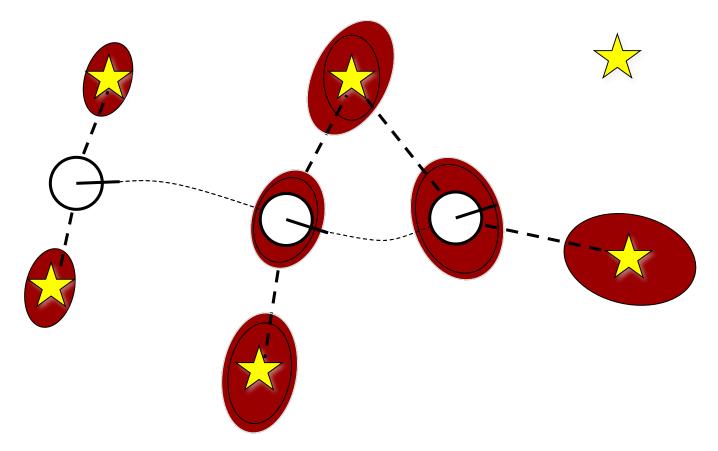
Grid maps (occupancy or reflection probability maps)





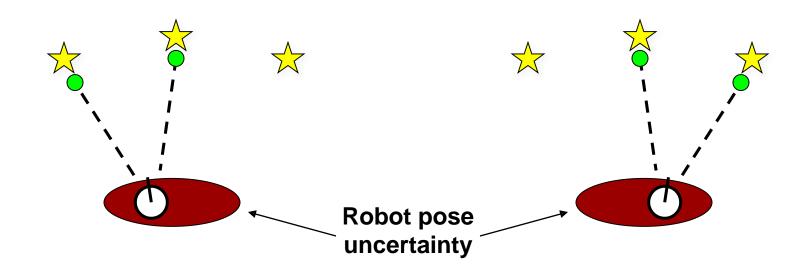
Why is SLAM a Hard Problem?

SLAM: robot path and map are both unknown!



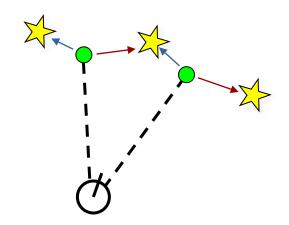
Robot path error correlates errors in the map

Why is SLAM a Hard Problem?



- In the real world, the mapping between observations and landmarks is unknown
- Picking wrong data associations can have catastrophic consequences
- Pose error correlates data associations

Data Association Problem



- A data association is an assignment of observations to landmarks
- In general there are more than $\binom{n}{m}$ (n observations, m landmarks) possible associations
- Also called "assignment problem"

Particle Filters

- Represent belief by random samples
- Estimation of non-Gaussian, nonlinear processes
- Sampling Importance Resampling (SIR) principle
 - Draw the new generation of particles
 - Assign an importance weight to each particle
 - Resample
- Typical application scenarios are tracking, localization, ...

Localization vs. SLAM

- A particle filter can be used to solve both problems
- Localization: state space $\langle x, y, \theta \rangle$
- SLAM: state space $\langle x, y, \theta, map \rangle$
 - for landmark maps = $\langle I_1, I_2, ..., I_m \rangle$
 - for grid maps = $\langle c_{11}, c_{12}, ..., c_{1n}, c_{21}, ..., c_{nm} \rangle$

 Problem: The number of particles needed to represent a posterior grows exponentially with the dimension of the state space!

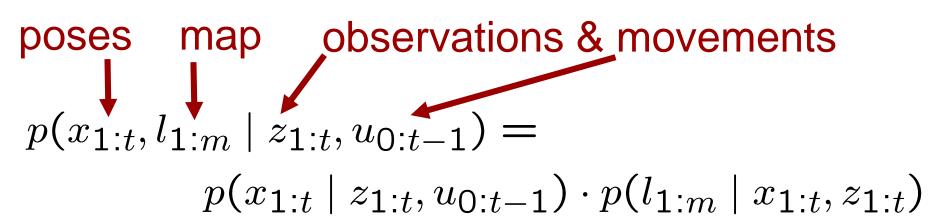
Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?

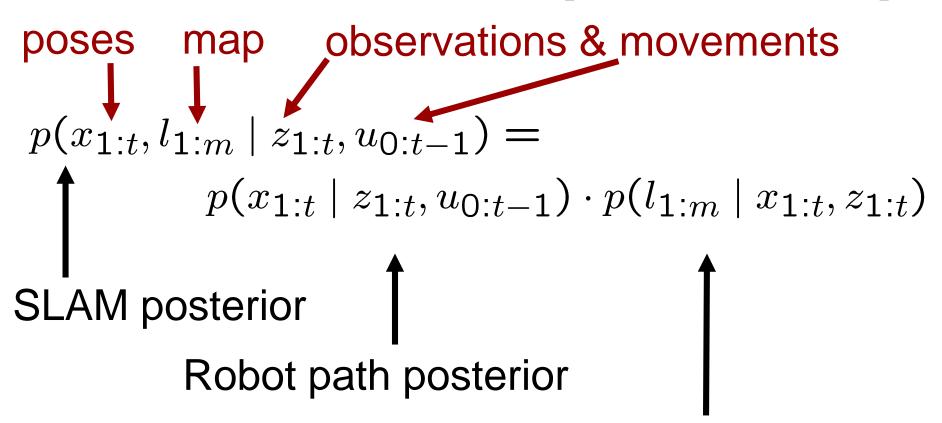
Dependencies

- Is there a dependency between certain dimensions of the state space?
- If so, can we use the dependency to solve the problem more efficiently?
- In the SLAM context
 - The map depends on the poses of the robot.
 - We know how to build a map given the position of the sensor is known.

Factored Posterior (Landmarks)



Factored Posterior (Landmarks)



landmark positions

Does this help to solve the problem?

Rao-Blackwellization

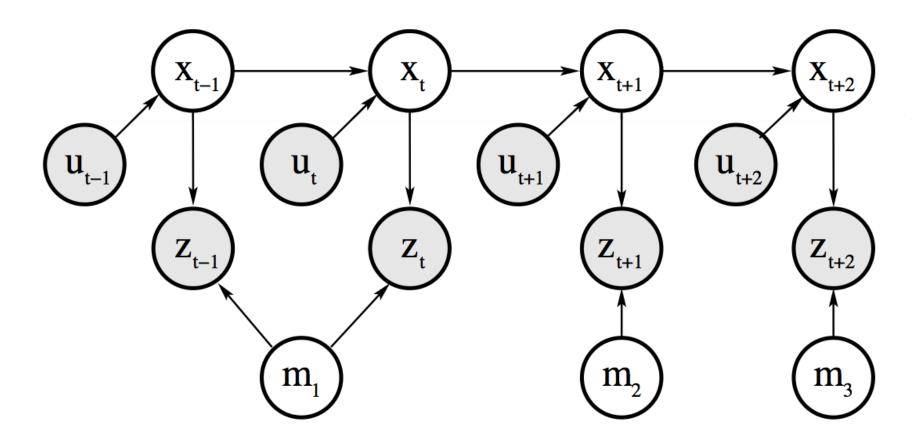
 Factorization to exploit dependencies between variables:

$$p(a,b) = p(a) \cdot p(b \mid a)$$

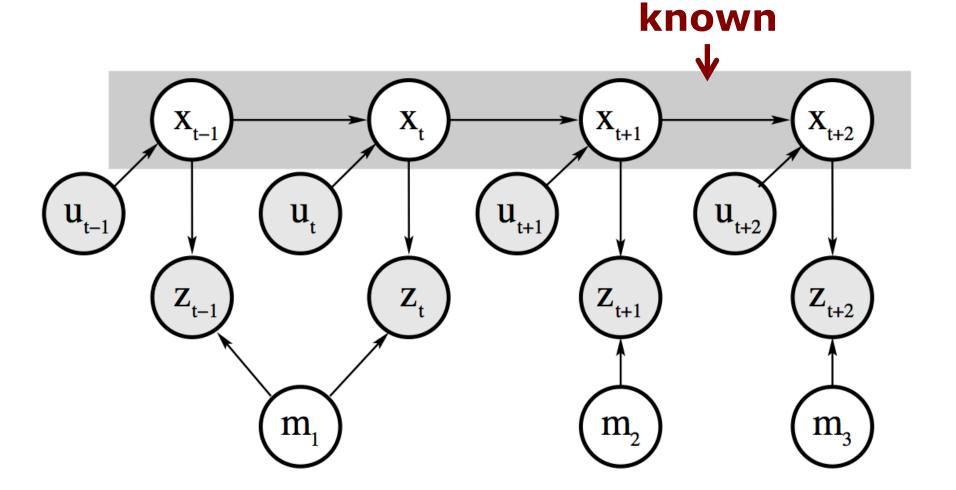
• If $p(b \mid a)$ can be computed in closed form, represent only p(a) with samples and compute $p(b \mid a)$ for every sample

It comes from the Rao-Blackwell theorem

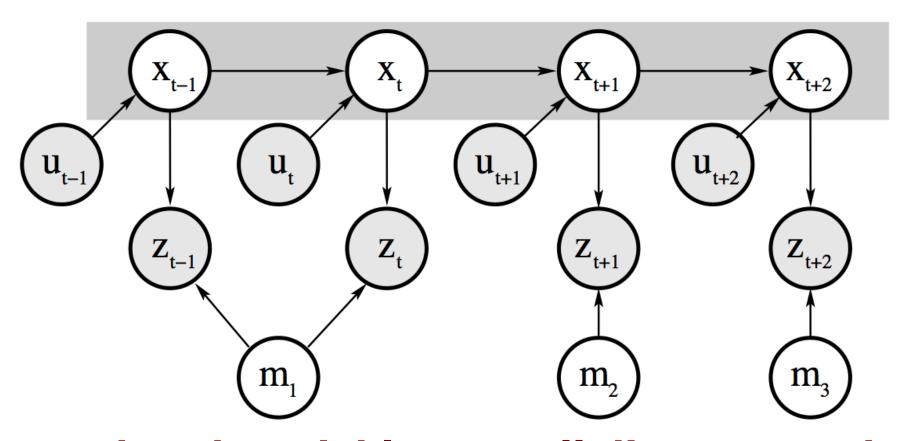
Revisit the Graphical Model



Revisit the Graphical Model



Landmarks are Conditionally Independent Given the Poses



Landmark variables are all disconnected (i.e. independent) given the robot's path

Factored Posterior

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot p(l_{1:m} \mid x_{1:t}, z_{1:t})$$

$$= p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

Robot path posterior (localization problem)

Conditionally independent landmark positions

Rao-Blackwellization for SLAM

$$p(x_{1:t}, l_{1:m} \mid z_{1:t}, u_{0:t-1}) =$$

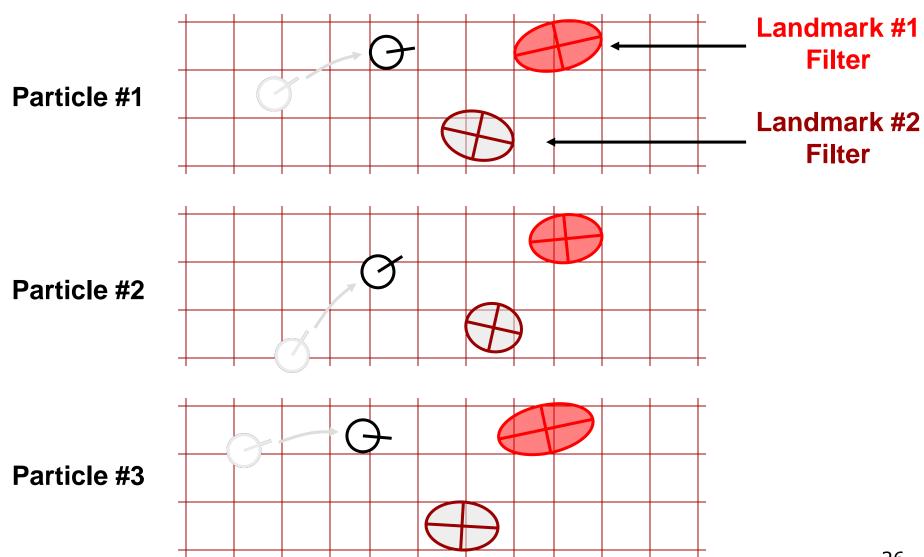
$$p(x_{1:t} \mid z_{1:t}, u_{0:t-1}) \cdot \prod_{i=1}^{M} p(l_i \mid x_{1:t}, z_{1:t})$$

 Given that the second term can be computed efficiently, particle filtering becomes possible!

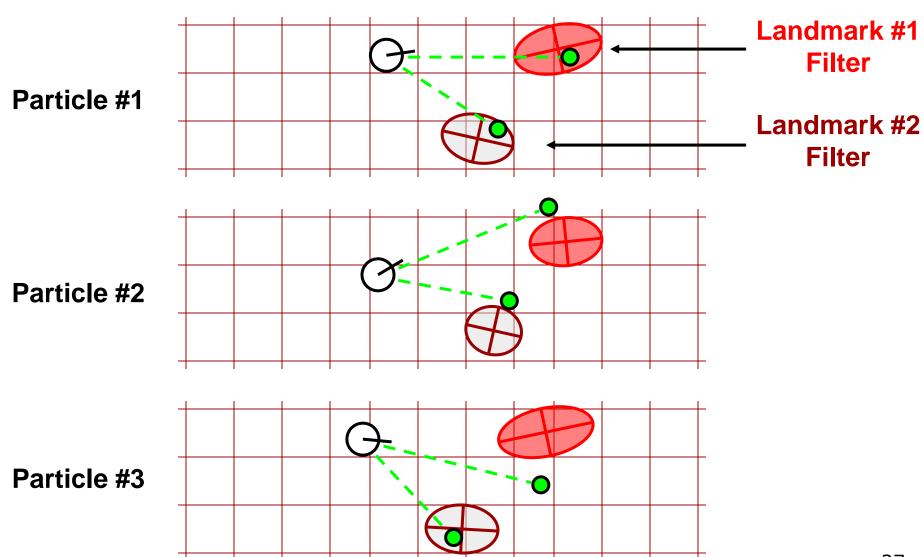
FastSLAM

- Rao-Blackwellized particle filtering based on landmarks [Montemerlo et al., 2002]
- Each landmark is represented by a 2x2
 Extended Kalman Filter (EKF)
- Each particle therefore has to maintain M EKFs

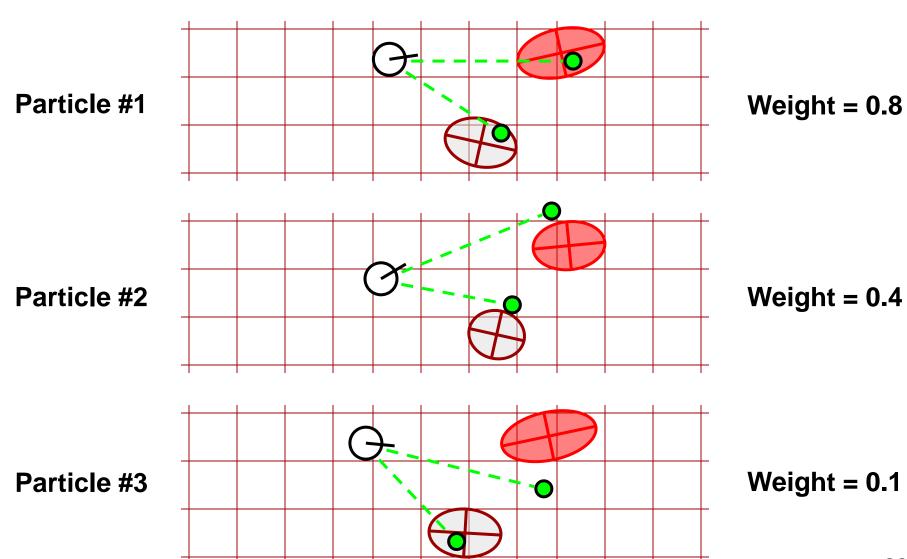
FastSLAM - Action Update



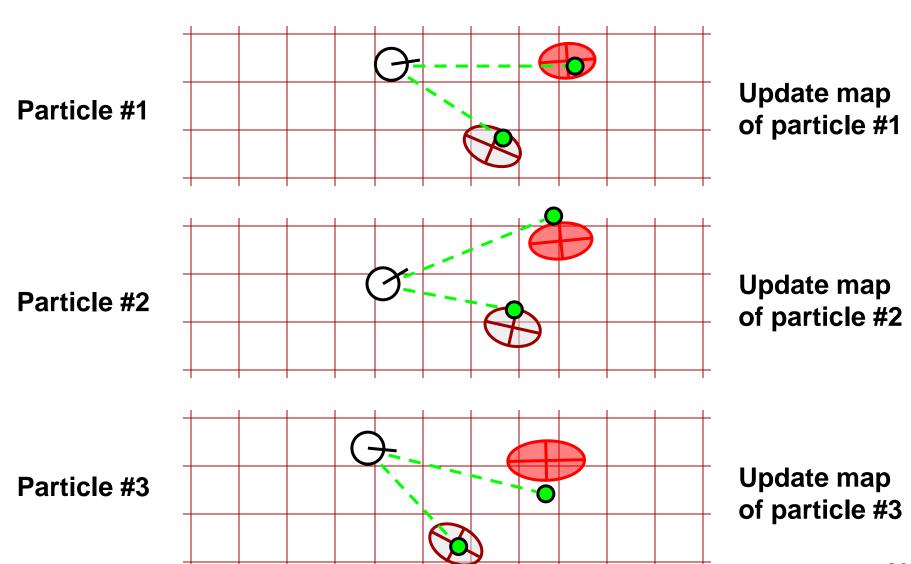
FastSLAM - Sensor Update



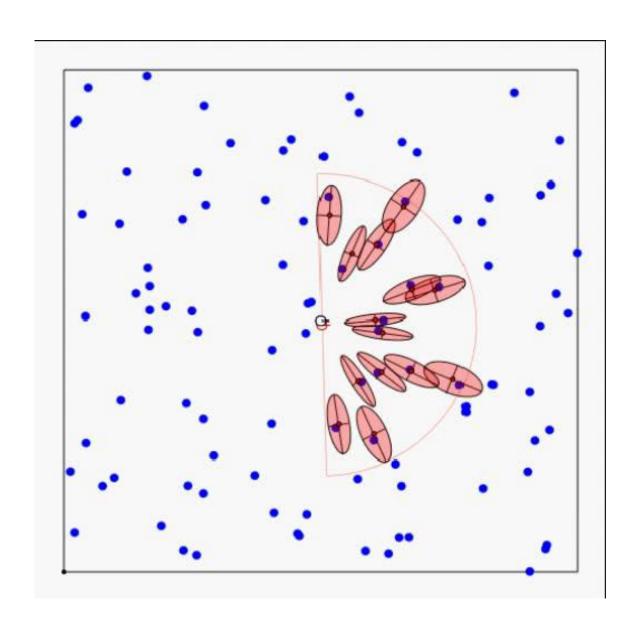
FastSLAM - Sensor Update



FastSLAM - Sensor Update



FastSLAM - Video



FastSLAM Complexity - Naive

 Update robot particles based on the control

 $\mathcal{O}(N)$

 Incorporate an observation into the Kalman filters (given the data association) $\mathcal{O}(N)$

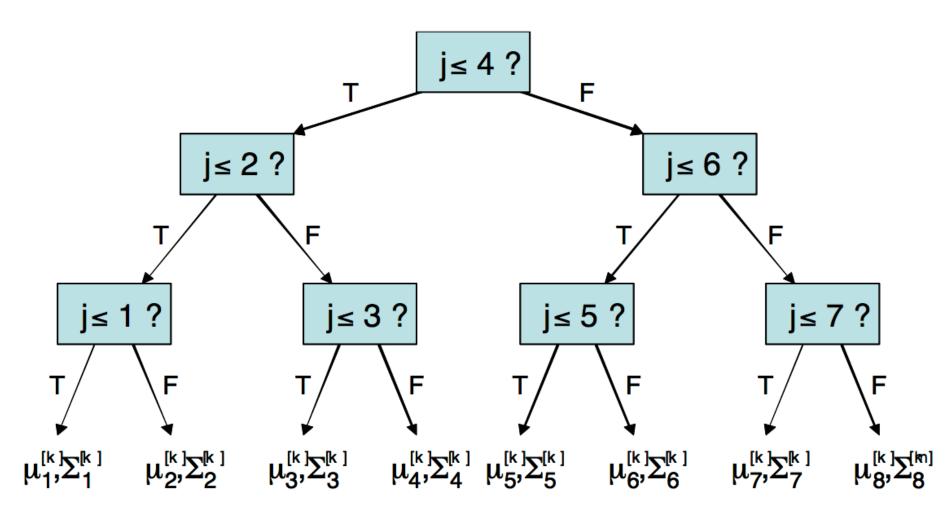
Resample particle set

 $\mathcal{O}(NM)$

N = Number of particlesM = Number of map features

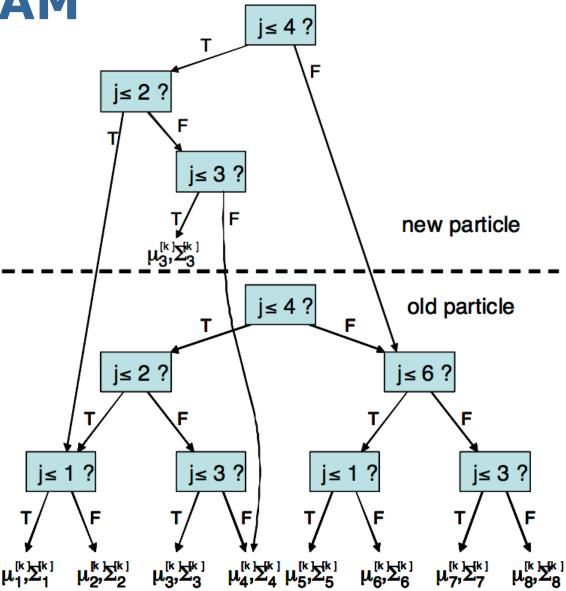
 $\mathcal{O}(NM)$

A Better Data Structure for FastSLAM



Courtesy: M. Montemerlo

A Better Data Structure for FastSLAM



FastSLAM Complexity

 Update robot particles based on the control

 $\mathcal{O}(N)$

 Incorporate an observation into the Kalman filters (given the data association)

 $\mathcal{O}(N \log M)$

Resample particle set

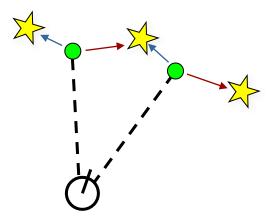
 $\mathcal{O}(N \log M)$

N = Number of particlesM = Number of map features

 $\overline{\mathcal{O}(N\log M)}$

Data Association Problem

Which observation belongs to which landmark?

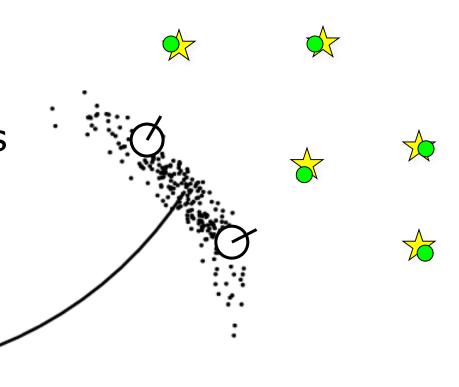


- A robust SLAM solution must consider possible data associations
- Potential data associations depend also on the pose of the robot

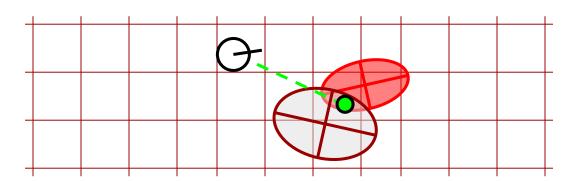
Multi-Hypothesis Data Association

 Data association is done on a per-particle basis

 Robot pose error is factored out of data association decisions



Per-Particle Data Association



Was the observation generated by the red or the brown landmark?

P(observation|red) = 0.3

P(observation|brown) = 0.7

- Two options for per-particle data association
 - Pick the most probable match
 - Pick a random association weighted by the observation likelihoods
- If the probability is too low, generate a new landmark

Results - Victoria Park

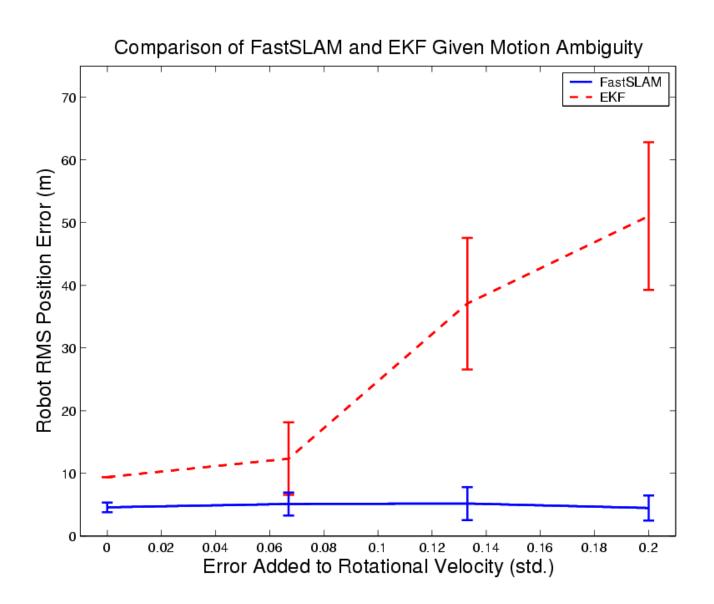
- 4 km traverse
- < 5 m RMS</p> position error
- 100 particles

Blue = GPS Yellow = FastSLAM

Results - Victoria Park (Video)

Dataset courtesy of University of Sydney 39

Results - Data Association



FastSLAM Summary

- FastSLAM factors the SLAM posterior into low-dimensional estimation problems
 - Scales to problems with over 1 million features
- FastSLAM factors robot pose uncertainty out of the data association problem
 - Robust to significant ambiguity in data association
 - Allows data association decisions to be delayed until unambiguous evidence is collected
- Advantages compared to the classical EKF approach (especially with non-linearities)
- Complexity of O(N log M)