# Introduction to Mobile Robotics

# **Graph-Based SLAM**

Daniel Büscher



1

# **Reminder: Particle Filter Map**



- 30-particles -
- 250x250m<sup>2</sup>
- 1.75 km (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map
- Now: define graph based on trajectory and optimize!

#### 1. Graph-based SLAM

### **Graph-Based SLAM**

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain





### **Graph-Based SLAM**

 Observing previously seen areas generates constraints between nonsuccessive poses



#### **Example: Odometry Map**



Hanover2 dataset (Courtesy of Oliver Wulf)

#### **Example: Loop Closures**



Hanover2 dataset (Courtesy of Oliver Wulf)

### How to correct the trajectory?



Imagine this to be a system of masses and springs!

## Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



 Once we have the graph, we determine the most likely map by correcting the nodes



- Once we have the graph, we determine the most likely map by correcting the nodes
  - ... like this



- Once we have the graph, we determine the most likely map by correcting the nodes
  - ... like this
- Then, we can render a map based on the known poses



# The Overall SLAM System

- Interplay of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space



#### 2. The Pose Graph

### The Pose Graph

- It consists of n nodes  $\mathbf{x} = \mathbf{x}_{1:n}$
- Each  $\mathbf{x}_i$  is a 2D or 3D transformation (the pose of the robot at time  $t_i$ )
- A constraint/edge exists between the nodes x<sub>i</sub> and x<sub>j</sub> if...

# Create an Edge If... (1)

- ... the robot moves from  $\mathbf{x}_i$  to  $\mathbf{x}_{i+1}$
- Edge corresponds to odometry



# Create an Edge If... (2)

- ...the robot observes the same part of the environment from x<sub>i</sub> and from x<sub>j</sub>
- Construct a virtual measurement about the position of x<sub>j</sub> seen from x<sub>i</sub>

$$\mathbf{x}_{i}^{igodom}$$

Measurement from  $\mathbf{x}_i$ 

Measurement from  $\mathbf{x}_j$ 

# Create an Edge If... (2)

- ...the robot observes the same part of the environment from x<sub>i</sub> and from x<sub>j</sub>
- Construct a virtual measurement about the position of x<sub>j</sub> seen from x<sub>i</sub>



Edge represents the position of  $x_j$  seen from  $x_i$  based on the **observation** 

### **Pose Graph: Loop Closure**



#### 3. Least-squares optimization

# Least Squares in General

- Approach for computing a solution for an overdetermined system
- "More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

### Problem

- Given a system described by a set of n observation functions  $\{f_i(\mathbf{x})\}_{i=1:n}$
- Let
  - X be the state vector
  - $\mathbf{Z}_i$  be a measurement of the state  $\mathbf{X}_i$
  - $\hat{\mathbf{z}}_i = f_i(\mathbf{x})$  be a function which maps  $\mathbf{x}$  to a predicted measurement  $\hat{\mathbf{z}}_i$
- Given n noisy measurements z<sub>1:n</sub> about the state x
- Goal: Estimate the state **x** which bests explains the measurements  $z_{1:n}$

#### **Graphical Explanation**



#### **Error Function**

 Error e<sub>i</sub> is typically the difference between the predicted and actual measurement

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume that the error has zero mean and is normally distributed
- Gaussian error with information matrix  ${f \Omega}_i$
- The squared error of a measurement depends only on the state and is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

# Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

### Least Squares for SLAM

- Overdetermined system for estimating the robot's poses given observations
- "More observations than states"
- Minimizes the sum of the squared errors

#### 4. Examples

#### **Sparse Pose Adjustment**



### **Example: CS Campus Freiburg**





#### **There are Variants for 3D**



- Highly connected graph
- Poor initial guess
- LU & variants fail
- 2200 nodes
- 8600 constraints



#### **Campus : SLAM Map**

#### **Freiburg Campus Octomap**



#### **Kolorierte Punktwolke**



### Conclusions

- Graph SLAM: optimization procedure
- Error functions compute the mismatch between the state and the observations
- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton error minimization
- Currently one of the state-of-the-art solutions for SLAM