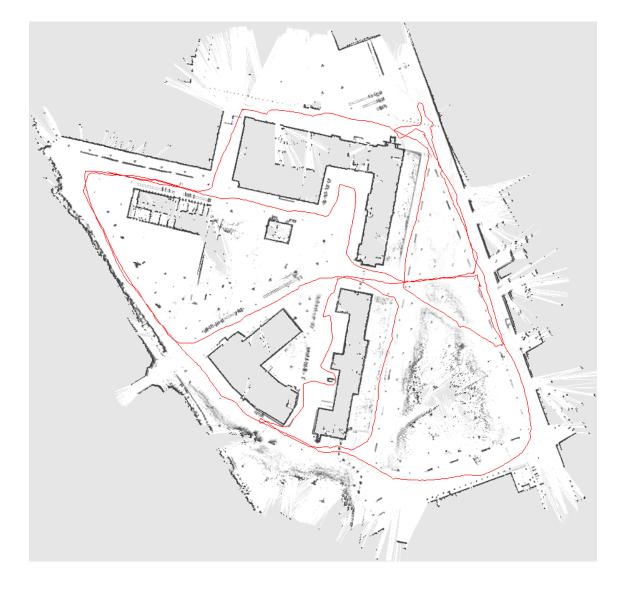
Introduction to Mobile Robotics

Graph-Based SLAM

Daniel Büscher

1

Reminder: Particle Filter Map

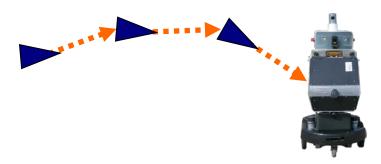


- 30-particles -
- 250x250m²
- 1.75 km (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map
- Now: define graph based on trajectory and optimize!

1. Graph-based SLAM

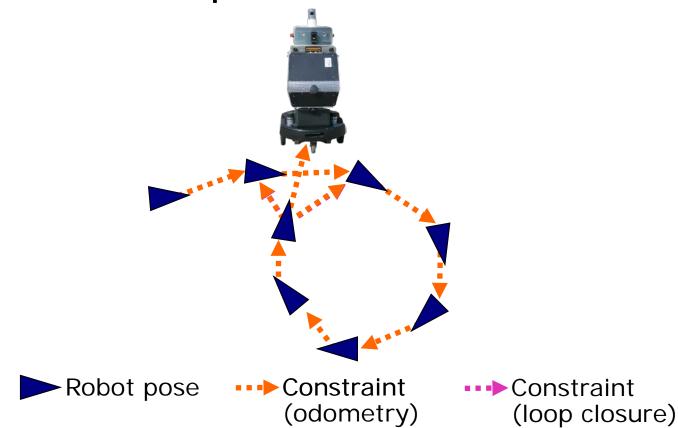
Graph-Based SLAM

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

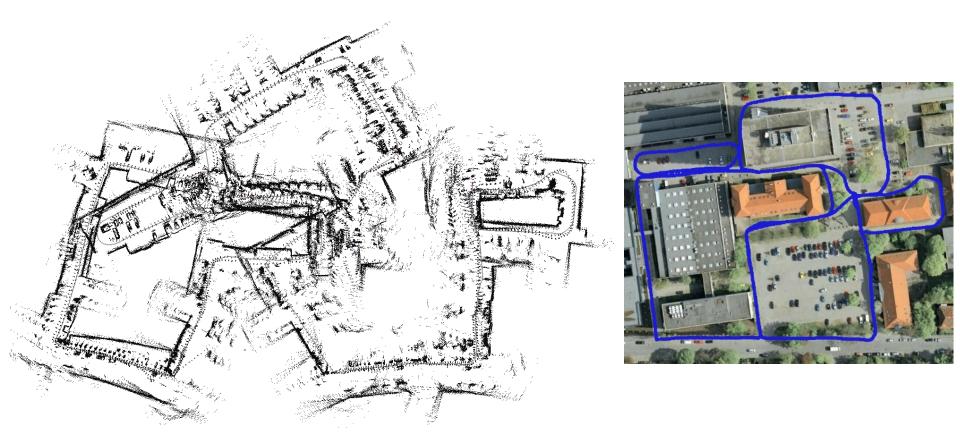


Graph-Based SLAM

 Observing previously seen areas generates constraints between nonsuccessive poses

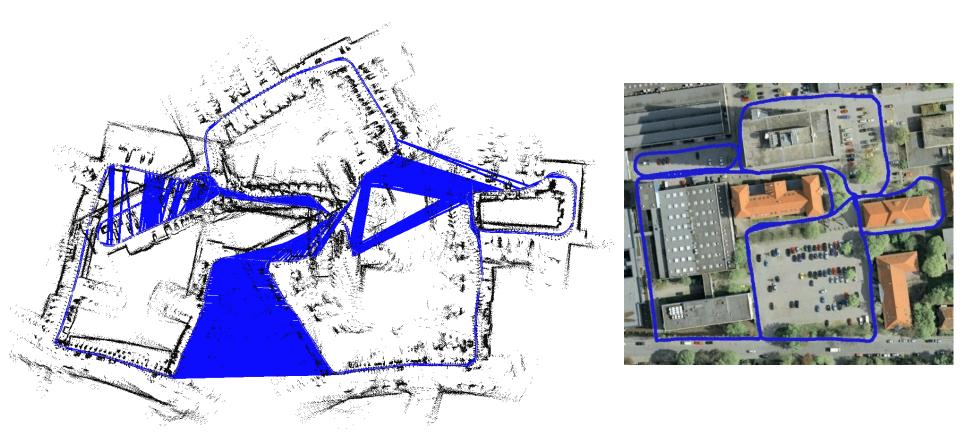


Example: Odometry Map



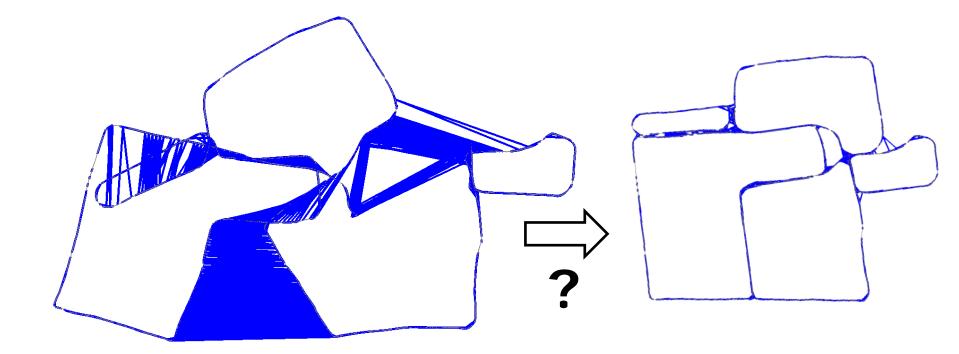
Hanover2 dataset (Courtesy of Oliver Wulf)

Example: Loop Closures



Hanover2 dataset (Courtesy of Oliver Wulf)

How to correct the trajectory?

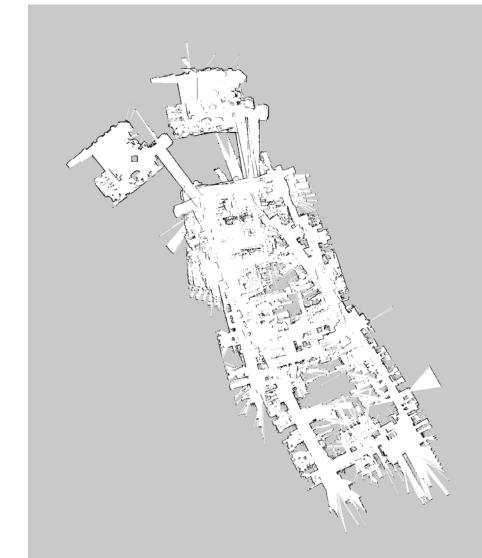


Imagine this to be a system of masses and springs!

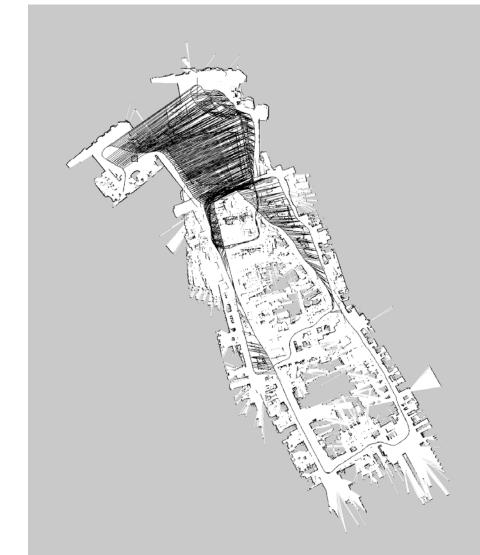
Idea of Graph-Based SLAM

- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to a spatial constraint between them
- Graph-Based SLAM: Build the graph and find a node configuration that minimize the error introduced by the constraints

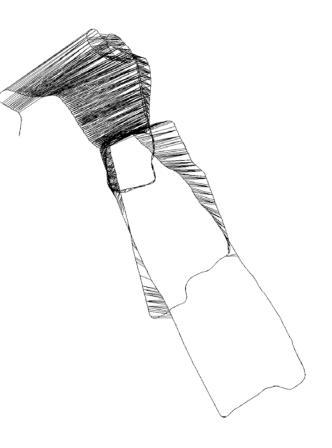
- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes



 Once we have the graph, we determine the most likely map by correcting the nodes

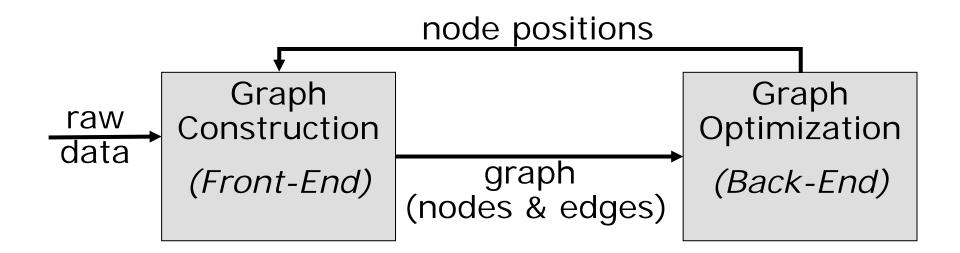


- Once we have the graph, we determine the most likely map by correcting the nodes
 - ... like this

- Once we have the graph, we determine the most likely map by correcting the nodes
 - ... like this
- Then, we can render a map based on the known poses

The Overall SLAM System

- Interplay of front-end and back-end
- A consistent map helps to determine new constraints by reducing the search space



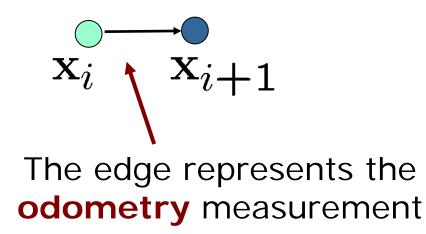
2. The Pose Graph

The Pose Graph

- It consists of n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
- Each \mathbf{x}_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint/edge exists between the nodes x_i and x_j if...

Create an Edge If... (1)

- ... the robot moves from \mathbf{x}_i to \mathbf{x}_{i+1}
- Edge corresponds to odometry



Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a virtual measurement about the position of x_j seen from x_i

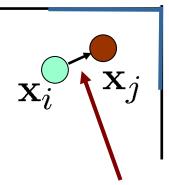
$$\mathbf{x}_{i}^{igodom}$$

Measurement from \mathbf{x}_i

Measurement from \mathbf{x}_j

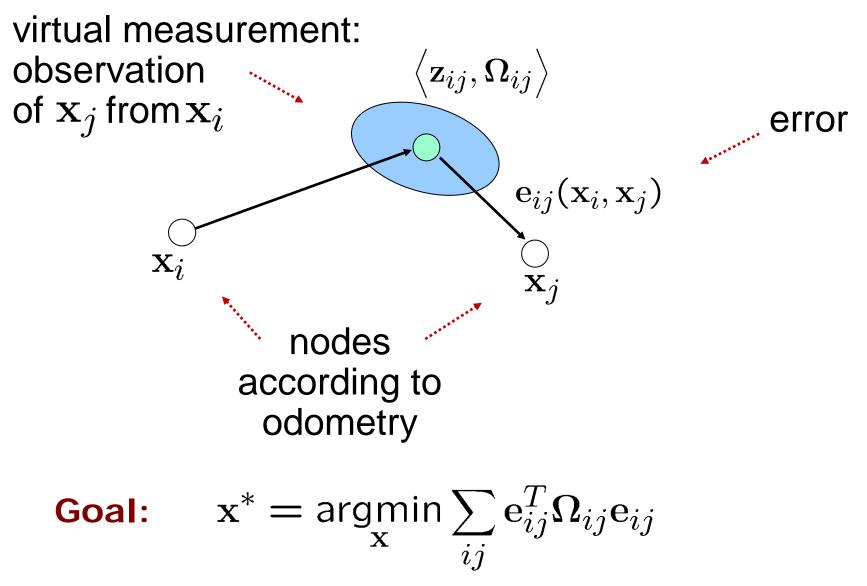
Create an Edge If... (2)

- ...the robot observes the same part of the environment from x_i and from x_j
- Construct a virtual measurement about the position of x_j seen from x_i



Edge represents the position of x_j seen from x_i based on the **observation**

Pose Graph: Loop Closure



3. Least-squares optimization

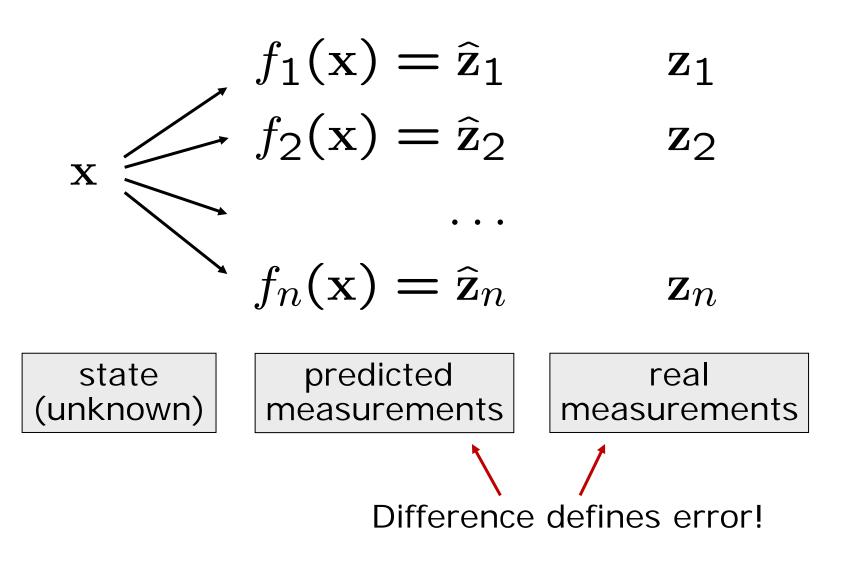
Least Squares in General

- Approach for computing a solution for an overdetermined system
- "More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

Problem

- Given a system described by a set of n observation functions $\{f_i(\mathbf{x})\}_{i=1:n}$
- Let
 - X be the state vector
 - \mathbf{Z}_i be a measurement of the state \mathbf{X}_i
 - $\hat{\mathbf{z}}_i = f_i(\mathbf{x})$ be a function which maps \mathbf{x} to a predicted measurement $\hat{\mathbf{z}}_i$
- Given n noisy measurements z_{1:n} about the state x
- Goal: Estimate the state **x** which bests explains the measurements $z_{1:n}$

Graphical Explanation



Error Function

 Error e_i is typically the difference between the predicted and actual measurement

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume that the error has zero mean and is normally distributed
- Gaussian error with information matrix ${f \Omega}_i$
- The squared error of a measurement depends only on the state and is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

Gauss-Newton: The Overall Error Minimization Procedure

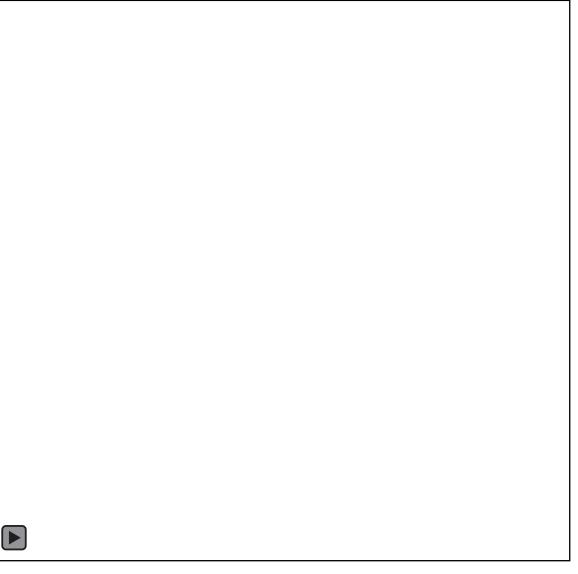
- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Least Squares for SLAM

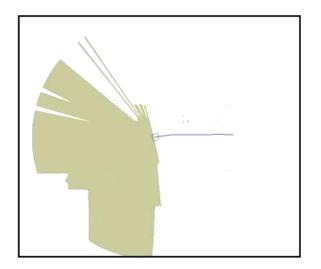
- Overdetermined system for estimating the robot's poses given observations
- "More observations than states"
- Minimizes the sum of the squared errors

4. Examples

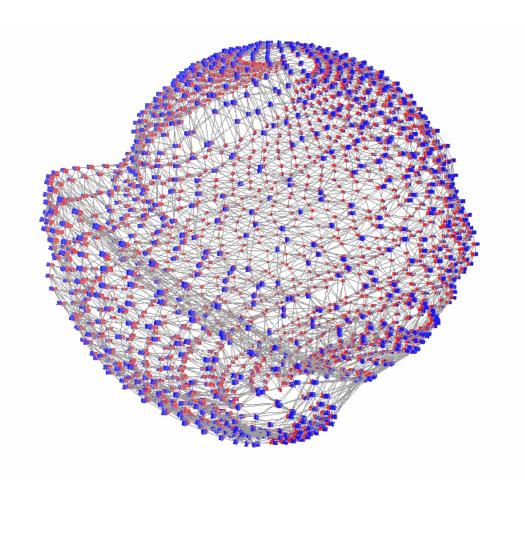
Sparse Pose Adjustment



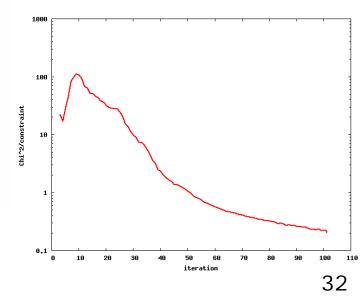
Example: CS Campus Freiburg



There are Variants for 3D

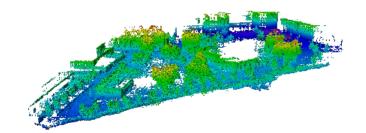


- Highly connected graph
- Poor initial guess
- LU & variants fail
- 2200 nodes
- 8600 constraints



Campus : SLAM Map

Freiburg Campus Octomap



Kolorierte Punktwolke

Conclusions

- Graph SLAM: optimization procedure
- Error functions compute the mismatch between the state and the observations
- The back-end part of the SLAM problem can be effectively solved with Gauss-Newton error minimization
- Currently one of the state-of-the-art solutions for SLAM