Robotics 2

Graph Based SLAM using Least Squares

Giorgio Grisetti
Graph-Based SLAM in a Nutshell

- Problem described as a graph
 - Every node corresponds to a robot position and to a laser measurement
 - An edge between two nodes represents a data-dependent spatial constraint between the nodes

KUKA Halle 22, courtesy of the Pfaffie
Graph-Based SLAM in a Nutshell

- Problem described as a graph
 - Every node corresponds to a robot position and to a laser measurement
 - An edge between two nodes represents a data-dependent spatial constraint between the nodes

KUKA Halle 22, courtesy of the Pfaffie
Graph-Based SLAM in a Nutshell

- Once we have the graph we determine the most likely map by “moving” the nodes
Graph-Based SLAM in a Nutshell

- Once we have the graph we determine the most likely map by “moving” the nodes
- ... like this
Graph-Based SLAM in a Nutshell

- Once we have the graph we determine the most likely map by “moving” the nodes
- ... like this
- Then we render a map based on the known poses and we are all happy

KUKA Halle 22 mapped, courtesy of me
Graph Optimization

- In this lecture we will *not* address the how to construct the graph, but only how to retrieve the position of its nodes which is maximally consistent the observations in the edges.
- A general Graph-Based slam algorithm interleaves the two steps
 - Graph Construction
 - Graph Optimization
- A consistent map helps in determining the new constraints by reducing the search space.
How does the Graph look like?

- It has \(n \) nodes \(x = x_{1:n} \)
 - Each node \(x_i \) is a 2D or 3D transformation representing the pose of the robot at time \(t_i \).
- There is a constraint \(e_{ij} \) between the node \(x_i \) and the node \(x_j \) if
 - either
 1. The robot observed the same part of the environment from both \(x_i \) and \(x_j \) and,
 2. Via this common observation it constructs a “virtual measurement” about the position of \(x_j \) seen from.
 - Or
 1. The positions are subsequent in time and there is an odometry measurement between the two.
How does the Graph look like?

- It has n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
 - Each node \mathbf{x}_i is a 2D or 3D transformation representing the pose of the robot at time t_i.
- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_j if
 - either
 - The robot observed the same part of the environment from both \mathbf{x}_i and \mathbf{x}_j and,
 - Via this common observation it constructs a “virtual measurement” about the position of \mathbf{x}_j seen from.
 - Or
 - The positions are subsequent in time and there is an odometry measurement between the two.
How does the Graph look like?

- It has n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
 - Each node \mathbf{x}_i is a 2D or 3D transformation representing the pose of the robot at time t_i.
- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_j if
 - either
 - The robot observed the same part of the environment from both \mathbf{x}_i and \mathbf{x}_j and,
 - Via this common observation it constructs a “virtual measurement” about the position of \mathbf{x}_j seen from.
 - Or
 - The positions are subsequent in time and there is an odometry measurement between the two.

In the edge:
the position of \mathbf{x}_j seen from \mathbf{x}_i, based on the **observations**
How does the Graph look like?

- It has n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
 - Each node \mathbf{x}_i is a 2D or 3D transformation representing the pose of the robot at time t_i.

- There is a constraint e_{ij} between the node \mathbf{x}_i and the node \mathbf{x}_j if
 - either
 - The robot observed the same part of the environment from both \mathbf{x}_i and \mathbf{x}_j and,
 - Via this common observation it constructs a "virtual measurement" about the position of \mathbf{x}_j seen from.
 - Or
 - The positions are subsequent in time and there is an odometry measurement between the two.
How does the Graph look like?

- To account for the different nature of the observations we add to the edge an information matrix Ω_{ij} to encode the uncertainty of the edge.
- The “bigger” (in matrix sense) Ω_{ij} is, the more the edge “matters” in the optimization procedure.

- Any hint about the information matrices of the system in case we use scan-matching and odometry?
- How should these matrices look like in an endless corridor in the two cases?
Pose Graph

The input for the optimization procedure is a graph annotated as follows:

- **Nodes**: \(x_i \) and \(x_j \)
- **Edge**: \(\langle z_{ij}, \Omega_{ij} \rangle \)
- **Observation of** \(x_j \) **from** \(x_i \)
- **Error**: \(e_{ij}(x_i, x_j) \)

Goal:

- Find the assignment of poses to the nodes of the graph which minimizes the negative log likelihood of the observations:

\[
\hat{x} = \arg\min_x \sum_{ij} e_{ij}^T \Omega_{ij} e_{ij}^T
\]

```
pose_graph
```
SLAM as a Least Square Problem

- The function to minimize looks suitable for least squares (see previous lecture)

\[
\hat{x} = \arg\min \sum_{i,j} e_{ij}^T(x_i, x_j) \Omega_{ij} e_{ij}(x_i, x_j)
\]

\[
= \arg\min \sum_{k} e_{k}^T(x) \Omega_{k} e_{k}(x)
\]

- We can regard each edge as a measurement, and use what we already know.

Questions:
- What is the state vector?

- What is the error function?
SLAM as a Least Square Problem

- The function to minimize looks suitable for least squares (see previous lecture)

\[\hat{x} = \arg\min \sum_{i,j} e_{ij}^T(x_i, x_j) \Omega_{ij} e_{ij}(x_i, x_j) \]

\[= \arg\min \sum_{k} e_{k}^T(x) \Omega_{k} e_{k}(x) \]

- We can regard each edge as a measurement, and use what we already now.

- Questions:
 - What is the state vector?
 \[x^T = \begin{pmatrix} x_1^T & x_2^T & \cdots & x_n^T \end{pmatrix} \]
 - What is the error function?

One block for each node of the graph
The Error Function

- The generic error function of a constraint characterized by a mean z_{ij} and an information Ω_{ij} is vector of the same size of a pose x_i.

 \[e_{ij}(x_i, x_j) = t2v(Z_{ij}^{-1}(X_i^{-1} \cdot X_j)) \]

- We can write the error as a function of all the state x.

 \[e_{ij}(x) = t2v(Z_{ij}^{-1}(X_i^{-1} \cdot X_j)) \]

- Note that the error function is 0 when $Z_{ij} = (X_i^{-1} \cdot X_j)$
The Derivative of the Error Function

- Does one error function $e_{ij}(x)$ depend on all state variables?
 - No, only on x_i and x_j.
- Is there any consequence on the Jacobian?
 - Yes, it will be non-zero only in the rows corresponding to x_i and x_j!
Does one error function $e_{ij}(x)$ depend on all state variables?
- No, only on x_i and x_j

Is there any consequence on the Jacobian?
The Derivative of the Error Function

- Does one error function $e_{ij}(x)$ depend on all state variables?
 - No, only on x_i and x_j

- Is there any consequence on the structure of the Jacobian?
 - Yes, it will be non-zero only in the rows corresponding to x_i and x_j!

\[
\frac{\partial e_{ij}(x)}{\partial x} = \begin{pmatrix}
0 & \ldots & \frac{\partial e_{ij}(x_i)}{\partial x_i} & \ldots & \frac{\partial e_{ij}(x_j)}{\partial x_j} & \ldots & 0
\end{pmatrix}
\]

\[
A_{ij} = \begin{pmatrix}
0 & \ldots & B_{ij} & \ldots & C_{ij} & \ldots & 0
\end{pmatrix}
\]
Consequences of the Sparsity

- To apply least squares we need to compute the coefficient vectors and the coefficient matrices:

\[b^T = \sum_{ij} b_{ij}^T = \sum_{ij} e_{ij}^T \Omega_{ij} A_{ij} \]

\[H = \sum_{ij} H_{ij} = \sum_{ij} A_{ij}^T \Omega A_{ij}^T \]

- The sparse structure of \(A_{ij} \) will result in a sparse structure of the linear system.
- This structure will reflect the topology of the graph.
Consequences of the Sparsity

- An edge of the graph contributes to the linear system via its coefficient vector b_{ij} and its coefficient matrix H_{ij}.
 - The coefficient vector is:

\[
b_{ij}^T = e_{ij}^T \Omega_{ij} A_{ij} = e_{ij}^T \Omega_{ij} \left(\begin{array}{ccc} 0 & \cdots & B_{ij} & \cdots & C_{ij} & \cdots & 0 \\ \end{array} \right) = \left(\begin{array}{cccc} 0 & \cdots & e_{ij}^T \Omega_{ij} B_{ij} & \cdots & e_{ij}^T \Omega_{ij} C_{ij} & \cdots & 0 \end{array} \right)
\]

- It is non-zero only in correspondence of x_i and x_j
Consequences of the Sparsity (cont.)

The coefficient matrix of an edge is:

\[H_{ij}^T = A_{ij}^T \Omega_{ij} A_{ij} \]

\[
= \begin{pmatrix}
 \vdots \\
 B_{ij}^T \\
 \vdots \\
 C_{ij}^T \\
\end{pmatrix} \Omega_{ij} \left(\cdots B_{ij} \cdots C_{ij} \cdots \right)
\]

\[
= \begin{pmatrix}
 B_{ij}^T \Omega_{ij} B_{ij} & B_{ij}^T \Omega_{ij} C_{ij} \\
 C_{ij}^T \Omega_{ij} B_{ij} & C_{ij}^T \Omega_{ij} C_{ij}
\end{pmatrix}
\]

- Is non zero only in the blocks \(i,j \)
Consequences of the Sparsity (cont.)

- An edge between x_i and x_j in the graph contributes only
 - to the i^{th} and the j^{th} blocks of the coefficient vector,
 - to the blocks ii, jj, ij and ji of the coefficient matrix.

- The resulting system is sparse, and can be computed by iteratively "accumulating" the contribution of each edge.

- Efficient solvers can be used
 - Sparse Cholesky decomposition with COLAMD
 - Conjugate Gradients
 - ... many others
The Linear System

- Vector of the states increments:
 \[\Delta x^T = \begin{pmatrix} \Delta x_1^T & \Delta x_2^T & \cdots & \Delta x_n^T \end{pmatrix} \]

- Coefficient vector:
 \[b^T = \begin{pmatrix} b_1^T & b_2^T & \cdots & b_n^T \end{pmatrix} \]

- System Matrix:
 \[H = \begin{pmatrix} H^{11} & H^{12} & \cdots & H^{1n} \\ H^{21} & H^{22} & \cdots & H^{2n} \\ \vdots & \vdots & \ddots & \vdots \\ H^{n1} & H^{n2} & \cdots & H^{nn} \end{pmatrix} \]

- The linear system is a block system with \(n \) blocks, one for each node of the graph.
Building the Linear System

- \(\mathbf{x} \) is the current linearization point
- **Initialization**
 \[
 \mathbf{b} = 0 \quad \mathbf{H} = 0
 \]
- **For each constraint**
 - Compute the error
 \[
 e_{ij} = t2v(Z_{ij}^{-1}(X_i^{-1} \cdot X_j))
 \]
 - Compute the blocks of the Jacobian:
 \[
 \mathbf{B}_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_i} \quad \mathbf{C}_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_j}
 \]
 - Update the coefficient vector:
 \[
 \mathbf{b}_i^T + = e_{ij}^T \Omega_{ij} \mathbf{B}_{ij}^T \quad \mathbf{b}_j^T + = e_{ij}^T \Omega_{ij} \mathbf{C}_{ij}^T
 \]
 - Update the system matrix:
 \[
 \mathbf{H}_{ii}^+ = \mathbf{B}_{ij}^T \Omega_{ij} \mathbf{B}_{ij} \quad \mathbf{H}_{ij}^+ = \mathbf{B}_{ij}^T \Omega_{ij} \mathbf{C}_{ij}
 \]
 \[
 \mathbf{H}_{ji}^+ = \mathbf{C}_{ij}^T \Omega_{ij} \mathbf{B}_{ij} \quad \mathbf{H}_{jj}^+ = \mathbf{C}_{ij}^T \Omega_{ij} \mathbf{C}_{ij}
 \]
Algorithm

- x: the initial guess
- While (! converged)
 - $<H,b> = \text{buildLinearSystem}(x)$;
 - $\Delta x = \text{solveSparse}(H \Delta x = b)$;
 - $x += \Delta x$;
Exercise(s)

- Consider a 2D graph, where each pose x_i is parameterized as
 \[x_i^T = (x_i \ y_i \ \theta_i) \]

- Consider the error function
 \[e_{ij} = t2v(Z_{ij}^{-1}(X_i^{-1} \cdot X_j)) \]

- Compute the blocks of the jacobian
 \[B_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_i} \quad C_{ij} = \frac{\partial e(x_i, x_j)}{\partial x_j} \]

- Hint: write the error function by using rotation matrices and translation vectors
 \[e_{ij}(x_i, x_j) = Z_{ij}^{-1} \begin{pmatrix} -R_i^T(t_j - t_i) \\ \theta_j - \theta_i \end{pmatrix} \]
Conclusions

- A part of the SLAM problem can be effectively solved with least square optimization.
- The algorithm described in this lecture has been entirely implemented in octave. Get the package from the web-page of the course.
- Play with the example, and figure out the relation between
 - the connectivity of the graph and
 - The structure of the matrix H.