Comparison of People Detection Techniques from 2D Laser Range Data

Hadi Kheyruri and Daniel Frey

Department of Computer Science, University of Freiburg
Motivation

As mobile robots slowly enter our daily lives and human environments a robot should be able to accomplish new tasks:

- Interaction with humans
- Motion planning considering human activity
- Learning by imitating and observing humans

Security Purposes:

- Recognition of abnormal behavior from humans in public places
People detection approaches based on sensor data:

- **Visual People Detection**
 - Data provided by camera sensors
 - Easily effected by the ambient conditions
- **Detection in Laser Range Data**
 - Popular application in other robotic tasks such as localization and mapping
 - Invariant to different lighting conditions, perspective change, etc.
 - Do not carry much information about humans
People Detection: 2D Laser Range Data

One scan of the environment gathered by a laser range sensor

Hadi Kheyruri and Daniel Frey
Comparison of People Detection Techniques from 2D LR Data
We based our research on comparing two methods:

- **Circle Fitting:** [Premebida and Nunes, 2005] propose a novel arc and circle detection method called Inscribed Angle Variance- IAV.

- **Boosting:** [Arras et al., 2008] and [Zivkovic and Kroese, 2007] suggest promising results for people detection by training and using AdaBoost.
Detection in Laser Range Data

- Features:
 - Geometric features
 - Motion features
- Two main phases of people detection in our work:
 - Segmentation
 - Detection: three approaches
- Goal: study effect of boosting several geometric features in comparison with IAV circle fitting method in people detection
Segmentation

- Segment data into sets related to the targets detected by the laser
- Simplify the detection phase
- Each segment is presented as a set of points in polar coordinates:

\[S_i = \{ p_1(r_1, \alpha_1), \ldots, p_i(r_i, \alpha_i), \ldots, p_n(r_n, \alpha_n) \} \] (1)
Algorithm

If $D(r_i, r_{i+1}) > D_{\text{thd}}$ Then, segments are separated Else segments are not separated

$$D_{\text{thd}} = C_0 + C_1 \min(r_i, r_{i+1}) \quad (2)$$

$$C_1 = \sqrt{2(1 - \cos(\Delta \alpha))} \quad (3)$$
Detection

- Bounding box as baseline
- IAV Circle fitting
- Boosting using AdaBoost
Baseline Approach - Bounding Box

- diagonal d of the bounding box is the parameter for classification

$$\mathcal{H} = \begin{cases}
d_{\text{lower bound}} < d_{S_i} < d_{\text{upper bound}} & \text{accept} \\
\text{Otherwise} & \text{reject}
\end{cases}$$

(4)
Circle Fitting

- Humans appear to be curved shaped in the laser range data
- Idea: Fit a circle with least square error with the Inscribed angle Variance (IAV) method
- Step 1: Determine the possibility of a segment being a circle
 - average angle value between 80 and 135 degree
 - standard deviation of angles between 8.6 - 23 degree

The inscribed angles of an arc are congruent
Circle Fitting - Inscribed Angle Variance

Determine the center of the circle

- Step 2: Determine parameters of the circle
 - compute the center of the circle
 - take the distance between one point and the center \(\Rightarrow \) radius
Boosting

- Question: Can a set of weak classifiers create a strong classifier?
- A weak classifier is only slightly better than random guessing
- Weighted sum of these weak classifiers constructs a strong classifier
- We would like to combine several features to form a strong classification
- Each feature is realized in a weak classifier
- AdaBoost is the most famous algorithm for implementation of this idea
A segment and corresponding fitted circle

- sum of the distances: 0.229877
- standard deviation of x coordinate: 0.0596496
- standard deviation of y coordinate: 0.0145876
- width: 0.198568
- jump distance to previous seg.: 1.11584
- jump distance to next seg.: 1.1456
- diagonal of bounding box: 0.203893
- number of points: 18
- fitted circle: radius: 0.166812, center: (0.35629, -1.26325)

Hadi Kheyruri and Daniel Frey

Comparison of People Detection Techniques from 2D LR Data
AdaBoost - Algorithm

• Input: Set of examples \((e_1, l_1), \ldots, (e_N, l_N)\), where \(l_n = +1\) for positive examples and \(l_n = -1\) for negative ones

• Initialize weights \(D_1(n) = \frac{1}{n}\)

• For \(t = 1, \ldots, T\) \{
 • For each \(h_j\) calculate: \(r_j = \sum_{n=1}^{N} D_t(n) l_n h_j(e_n)\), where \(h_j(e_n) \in \{+1, -1\}\)
 • Choose \(h_j\) that maximizes \(|r_j|\) and set \((h_t, r_t) = (h_j, r_j)\)
 • Update the weights: \(D_{t+1}(n) = D_t(n) \exp(-\alpha_t l_n h_t(e_n))\), where \(\alpha_t = \frac{1}{2} \log \left(\frac{1+r_t}{1-r_t} \right)\)
 • Normalize the weights: \(D_t(n) = \frac{D_t(n)}{\sum_{i=1}^{N} D_t(i)}\)

• The final strong classifier is given by: \(H(e) = \text{sign}(F(e))\), where \(F(e) = \sum_{t=1}^{T} \alpha_t h_t(e)\)
• Data was gathered using a SICK laser range finder
• 50 randomly selected scans were used for training purposes
• 1800 scans were used for testing
• Interval of acceptance for bounding box is set to \([0.1, 0.3]\)
 and for circle fitting is set to \([0.05, 0.6]\) meters
Experiments and Results

Histograms of the diagonals of the bounding boxes

- (a) human segments
- (b) nonhuman segments
Conclusion

- People detection and tracking is a key issue in many robotics tasks
- Two approaches were implemented and tested
- AdaBoost was compared to the new IAV circle fitting method
- Results of the experiment suggest that boosting several features can yield higher performance in comparison with a single individual feature
Thank you for your attention

Questions?