Vectors

- Arrays of numbers
- They represent a point in a n dimensional space

\[
\begin{pmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
\end{pmatrix}
\]
Vectors: Scalar Product

- Scalar-Vector Product $k \cdot \mathbf{a}$
- Changes the length of the vector, but **not** its direction
Vectors: Sum

- Sum of vectors (is commutative)

\[
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix}
+ \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix} + \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix}
\]

- Can be visualized as “chaining” the vectors.
Vectors: Dot Product

- Inner product of vectors (is a scalar)

\[a \cdot b = b \cdot a = \sum_{i} a_i \cdot b_i \]

- If one of the two vectors has \(|a| = 1\) the inner product \(a \cdot b\) returns the length of the projection of \(b\) along the direction of \(a\)

- If \(a \cdot b = 0\) the two vectors are orthogonal
Vectors: Linear (In)Dependence

- A vector \(\mathbf{b} \) is **linearly dependent** from \(\{ \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n \} \):
 \[\mathbf{b} = \sum k_i \cdot \mathbf{a}_i \]

- In other words if \(\mathbf{b} \) can be obtained by summing up the \(\mathbf{a}_i \) properly scaled.

- If do not exist \(\{ k_i \} \) such that \(\mathbf{b} = \sum k_i \cdot \mathbf{a}_i \) then \(\mathbf{b} \) is independent from \(\{ \mathbf{a}_i \} \)
Vectors: Linear (In)Dependence

- A vector b is **linearly dependent** from \(\{a_1, a_2, \ldots, a_n\} \):
 \[b = \sum_i k_i \cdot a_i \]

- In other words if b can be obtained by summing up the a_i properly scaled.

- If do not exist \(\{k_i\} \) such that
 \[b = \sum_i k_i \cdot a_i \]
 then b is independent from \(\{a_i\} \)
Matrices

- A matrix is written as a table of values
- Can be used in many ways:

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix} \]
Matrices as Collections of Vectors

- Column vectors

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix}
\]
Matrices as Collections of Vectors

- Row Vectors

\[
A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix}
\begin{pmatrix}
 a_1^T \\
 a_2^T \\
 \vdots \\
 a_{*n}^T
\end{pmatrix}
\]
Matrices Operations

- Sum (commutative, associative)
- Product (not commutative)
- Inversion (square, full rank)
- Transposition
- Multiplication by a scalar
- Multiplication by a vector
Matrix Vector Product

- The i component of $A \cdot b$ is the dot product $a^T_{i*} \cdot b$

- The vector $A \cdot b$ is linearly dependent from $\{a_{*i}\}$ with coefficients $\{b_i\}$

\[
A \cdot b = \begin{pmatrix}
a^T_{1*} \\
a^T_{2*} \\
\vdots \\
a^T_{n*}
\end{pmatrix} \cdot b = \begin{pmatrix}
a^T_{1*} \cdot b \\
a^T_{2*} \cdot b \\
\vdots \\
a^T_{n*} \cdot b
\end{pmatrix} = \sum_k a_{*k} \cdot b_k
\]
Matrix Vector Product

- If the column vectors represent a reference system, the product $A \cdot b$ computes the global transformation of the vector \mathbf{b} according to $\{a_i\}$.

![Diagram](image.png)
Matrix Vector Product

- Each $a_{i,j}$ can be seen as a linear mixing coefficient that tells how contributes to $(A \cdot b)_j$

- Example: Jacobian of a multi-dimensional function

\[
y = f(x) = \begin{pmatrix}
f_1(x) \\
f_2(x) \\
\vdots \\
f_n(x)
\end{pmatrix} \quad J_f = \begin{pmatrix}
\frac{df_1}{dx_1} & \frac{df_1}{dx_2} & \cdots & \frac{df_1}{dx_m} \\
\frac{df_2}{dx_1} & \frac{df_2}{dx_2} & \cdots & \frac{df_2}{dx_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{df_n}{dx_1} & \frac{df_n}{dx_2} & \cdots & \frac{df_n}{dx_m}
\end{pmatrix}
\]
Matrix Matrix Product

- Can be defined through
 - the dot product of row and column vectors
 - the linear combination of the columns of A scaled by the coefficients of the columns of B.

$$
C = A \cdot B
= \begin{pmatrix}
 a_{1*}^T \cdot b_{*1} & a_{1*}^T \cdot b_{*2} & \cdots & a_{1*}^T \cdot b_{*m} \\
 a_{2*}^T \cdot b_{*1} & a_{2*}^T \cdot b_{*2} & \cdots & a_{2*}^T \cdot b_{*m} \\
 \cdots & & & \\
 a_{n*}^T \cdot b_{*1} & a_{n*}^T \cdot b_{*2} & \cdots & a_{n*}^T \cdot b_{*m}
\end{pmatrix}
= \begin{pmatrix}
 A \cdot b_{*1} & A \cdot b_{*2} & \cdots & A \cdot b_{*m}
\end{pmatrix}
$$
Matrix Matrix Product

- If we consider the second interpretation we see that the columns of C are the projections of the columns of B through A.
- All the interpretations made for the matrix vector product hold.

$$C = A \cdot B$$

$$= \left(\begin{array}{c} A \cdot b_{*1} \\ A \cdot b_{*2} \\ \vdots \\ A \cdot b_{*m} \end{array} \right)$$

$$c_{*i} = A \cdot b_{*i}$$
Linear Systems

\[Ax = b \]

- Interpretations:
 - Find the coordinates \(x \) in the reference system of \(A \) such that \(b \) is the result of the transformation of \(Ax \).
 - Many efficient solvers
 - Conjugate gradients
 - Sparse Cholesky Decomposition (if SPD)
 - …
 - The system may be **over** or **under** constrained.
 - One can obtain a reduced system \((A' b')\) by considering the matrix \((A b)\) and suppressing all the rows which are linearly dependent.
Linear Systems

- The system is **over-constrained** if the number of linearly independent columns (or rows) of A' is greater than the dimension of b'.
- An **over-constrained** system does not admit a solution, however one may find a minimum norm solution by pseudo inversion

$$x = \arg\min_{x} ||A'x - b'|| = (A'^TA')^{-1}A'^Tb'$$
The system is under-constrained if the number of linearly independent columns (or rows) of A' is smaller than the dimension of b'.

An under-constrained admits infinite solutions. The degree of infinity is $\text{rank}(A') - \text{dim}(b')$.

The rank of a matrix is the maximum number of linearly independent rows or columns.
Matrix Inversion

\[\mathbf{A} \cdot \mathbf{B} = \mathbf{I} \]

- If \(\mathbf{A} \) is a square matrix of full rank, then there is a unique matrix \(\mathbf{B} = \mathbf{A}^{-1} \) such that the above equation holds.
- The \(i^{th} \) row of \(\mathbf{A} \) is and the \(j^{th} \) column of \(\mathbf{A}^{-1} \) are:
 - orthogonal, if \(i = j \)
 - their scalar product is 1, otherwise.
- The \(i^{th} \) column of \(\mathbf{A}^{-1} \) can be found by solving the following system:

\[
\mathbf{A} \cdot \mathbf{a}^{-1} \hat{i}_i = \mathbf{i} \hat{i}_i \quad \text{This is the} \ i^{th} \ \text{column of the identity matrix}
\]
Trace

- Only defined for **square matrices**
- **Sum** of the elements on the main diagonal, that is
 \[
 \text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn} = \sum_{i=1}^{n} a_{ii}
 \]
- It is a linear operator with the following properties
 - Additivity: \(\text{tr}(A + B) = \text{tr}(A) + \text{tr}(B) \)
 - Homogeneity: \(\text{tr}(c \cdot A) = c \cdot \text{tr}(A) \)
 - Pairwise commutative: \(\text{tr}(AB) = \text{tr}(BA), \quad \text{tr}(ABC) \neq \text{tr}(ACB) \)
- Trace is similarity invariant \(\text{tr}(P^{-1}AP) = \text{tr}((AP^{-1})P) = \text{tr}(A) \)
- Trace is transpose invariant \(\text{tr}(A) = \text{tr}(A^T) \)
Rank

- **Maximum** number of linearly independent rows (columns)
- Dimension of the **image** of the transformation \(f(x) = Ax \)

- When \(A \) is \(m \times n \) we have
 - \(\text{rank}(A) \geq 0 \) and the equality holds iff \(A \); the null matrix
 - \(\text{rank}(A) \leq \min(m, n) \)
 - \(f(x) \): **injective** iff \(\text{rank}(A) = n \)
 - \(f(x) \): **surjective** iff \(\text{rank}(A) = m \)
 - if \(m = n \) \(f(x) \); **bijective** and \(A \)** invertible iff \(\text{rank}(A) = n \)

- Computation of the rank is done by
 - Perform Gaussian elimination on the matrix
 - Count the number of non-zero rows
Determinant

- Only defined for **square matrices**
- Remember? \(A \cdot A^{-1} = I \) if and only if \(\det(A) \neq 0 \)
- For \(2 \times 2 \) matrices:
 Let \(A = [a_{ij}] \) and \(|A| = \det(A) \):
 \[
 \begin{vmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
 \end{vmatrix}
 = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}
 \]

- For \(3 \times 3 \) matrices:
 \[
 \begin{vmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{vmatrix}
 = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}
 - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}
 \]
Determinant

- For **general** $n \times n$ matrices?

Let A_{ij} be the submatrix obtained from A by deleting the i-th row and the j-th column.

\[
\begin{bmatrix}
1 & 2 & 5 & 0 \\
2 & 3 & 4 & -1 \\
-5 & 8 & 0 & 0 \\
0 & 4 & -2 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{bmatrix}
\]

Rewrite determinant for 3×3 matrices:

\[
det(A_{3\times3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11} = a_{11} \cdot det(A_{11}) - a_{12} \cdot det(A_{12}) + a_{13} \cdot det(A_{13})
\]
Determinant

- For general $n \times n$ matrices?

$$det(A) = a_{11} det(A_{11}) - a_{12} det(A_{12}) + \ldots + (-1)^{1+n} a_{1n} det(A_{1n})$$

$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(A_{1j})$$

Let $C_{ij} = (-1)^{i+j} det(A_{ij})$ be the (i,j)-cofactor, then

$$det(A) = a_{11} C_{11} + a_{12} C_{12} + \ldots + a_{1n} C_{1n}$$

$$= \sum_{j=1}^{n} a_{1j} C_{1j}$$

This is called the cofactor expansion across the first row.
Problem: Take a 25 x 25 matrix (which is considered small). The cofactor expansion method requires n! multiplications. For n = 25, this is 1.5×10^{25} multiplications for which a today supercomputer would take 500,000 years.

There are much faster methods, namely using Gauss elimination to bring the matrix into triangular form.

Then:

$$A = \begin{bmatrix} d_1 & * & * & * \\ 0 & d_2 & * & * \\ 0 & 0 & d_3 & * \\ 0 & 0 & 0 & d_4 \end{bmatrix} \quad \text{det}(A) = \prod_{i=1}^{n} d_i$$

Because for triangular matrices (with A being invertible), the determinant is the product of diagonal elements.
Determinant: Properties

- **Row operations** \((A \text{ still a } n \times n \text{ square matrix}) \)
 - If \(B \) results from \(A \) by interchanging two rows, then \(\det(B) = -\det(A) \)
 - If \(B \) results from \(A \) by multiplying one row with a number \(c \), then \(\det(B) = c \cdot \det(A) \)
 - If \(B \) results from \(A \) by adding a multiple of one row to another row, then \(\det(B) = \det(A) \)

- **Transpose:** \(\det(A^T) = \det(A) \)

- **Multiplication:** \(\det(A \cdot B) = \det(A) \cdot \det(B) \)

- Does **not** apply to addition! \(\det(A + B) \neq \det(A) + \det(B) \)
Determinant: Applications

- **Find the inverse** A^{-1} using Cramer’s rule
 $A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)}$
 with $\text{adj}(A)$ being the adjugate of A

- **Compute Eigenvalues**
 Solve the characteristic polynomial $\text{det}(A - \lambda \cdot I) = 0$

- **Area and Volume:** $\text{area} = |\text{det}(A)|$

\[
A = \begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{bmatrix}
\]

(r_i is i-th row)
Orthogonal matrix

- A matrix Q's **orthogonal** iff its column (row) vectors represent an **orthonormal** basis

\[
q_{*i} \cdot q_{*j} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}, \forall i, j
\]

- As linear transformation, it is **norm** preserving, and acts as an isometry in Euclidean space (rotation, reflection)

- Some properties:
 - The transpose is the inverse $QQ^T = Q^TQ = I$
 - Determinant has unity norm (§ 1)

\[
1 = \det(I) = \det(Q^TQ) = \det(Q)\det(Q^T) = (\det(Q))^2
\]
Rotational matrix

- **Important** in robotics
 - 2D Rotations \(R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \)
 - 3D Rotations along the main axes
 \[
 R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \\
 R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}
 \]
- **IMPORTANT**: Rotations are **not commutative**

\[
R_x\left(\frac{\pi}{4}\right) \cdot R_y\left(\frac{\pi}{4}\right) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, \quad R_x\left(\frac{\pi}{4}\right) \cdot R_y\left(\frac{\pi}{4}\right) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}
\]

\[
R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, \quad R_y\left(\frac{\pi}{4}\right) \cdot R_x\left(\frac{\pi}{4}\right) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}
\]
A general and easy way to describe a 3D transformation is via matrices.

\[
A = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \quad A^{-1} = \begin{pmatrix} R^T & -R^T t \\ 0 & 1 \end{pmatrix} \quad p = \begin{pmatrix} t \\ 1 \end{pmatrix}
\]

- Homogeneous behavior in 2D and 3D
- Takes naturally into account the non-commutativity of the transformations
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a robot in the space
 - Matrix B represents the position of a sensor on the robot
 - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a **robot** in the space
 - Matrix B represents the position of a sensor on the robot
 - The **sensor** perceives an **object** at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives me the pose of the object wrt the robot
Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
 - Matrix A represents the pose of a **robot** in the space
 - Matrix B represents the position of a sensor on the robot
 - The **sensor** perceives an **object** at a given location p, in its own frame [the sensor has no clue on where it is in the world]
 - Where is the object in the global frame?

Bp gives me the pose of the object wrt the robot

ABp gives me the pose of the object wrt the world
Symmetric matrix

- A matrix is symmetric if \(A = A^T \) e.g.
 \[
 \begin{bmatrix}
 1 & 4 & -2 \\
 4 & -1 & 3 \\
 -2 & 3 & 5 \\
 \end{bmatrix}
 \]

- A matrix is anti-symmetric if \(A = -A^T \) e.g.
 \[
 \begin{bmatrix}
 0 & 4 & -2 \\
 -4 & 0 & 3 \\
 2 & -3 & 0 \\
 \end{bmatrix}
 \]

- Every symmetric matrix:
 - can be diagonalizable \(D = QAQ^T \) where \(D \); a diagonal matrix of eigenvalues and \(Q \); an orthogonal matrix whose columns are the eigenvectors of \(A \)
 - define a quadratic form \(q(x) = x^T Ax = \sum_{i,j=1}^{n} a_{ij}x_ix_j \)
Positive definite matrix

- The analogous of positive number

- Definition
 \[M > 0 \text{ iff } z^T M z > 0 \forall z > 0 \]

- Examples
 \[M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0 \]
 \[M_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 2z_1z_2 < 0, \ z_1 = -z_2 \]
Positive definite matrix

- **Properties**
 - **Invertible**, with positive definite inverse
 - All **eigenvalues** > 0
 - **Trace** is > 0
 - For any spd \(A \) \(AAT, A^TA \) are positive definite
 - **Cholesky decomposition** \(A = LL^T \)
 - **Partial ordering**: \(M > N \) iff \(M - N > 0 \)
 - If \(M > N > 0 \) we have \(N^{-1} > M - 1 > 0 \)
 - If \(M, N > 0 \) then
 - \(M + N > 0 \)
 - \(MNM, NNM > 0 \)
Jacobian Matrix

• It’s a **non-square matrix** $n \times m$ in general

• Suppose you have a vector-valued function $f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix}$

• Let the **gradient operator** be the vector of (first-order) partial derivatives

\[
\nabla_x = \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \cdots & \frac{\partial}{\partial x_n} \end{bmatrix}^T
\]

Then, the **Jacobian matrix** is defined as

\[
F_x = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_2}{\partial x_n} \end{bmatrix}
\]
Jacobian Matrix

• It’s the orientation of the **tangent plane** to the vector-valued function at a given point

• Generalizes the **gradient** of a scalar valued function

• Heavily used for **first-order error propagation**

\[
C_{out} = F \cdot C_{in} \cdot F^T
\]

→ See later in the course
Quadratic Forms

- Many important functions can be locally approximated with a quadratic form.

\[f(x) = \sum_{i,j} a_{ij} x_i x_j + \sum_i b_i x_i + c \]

\[= x^T A x + b x + c \]

- Often one is interested in finding the minimum (or maximum) of a quadratic form.

\[\hat{x} = \arg\min_x f(x) \]
Quadratic Forms

- How can we use the matrix properties to quickly compute a solution to this minimization problem?

\[\hat{x} = \arg\min_{x} f(x) \]

- At the minimum we have \(f'(\hat{x}) = 0 \)

- By using the definition of matrix product we can compute \(f' \)

\[f(x) = x^T Ax + bx + c \]
\[f'(x) = A^T x + Ax + b \]
The minimum of \(f(x) = x^TAx + bx + c \) is where its derivative is set to 0

\[
0 = A^T x + Ax + b
\]

Thus we can solve the system

\[
(A^T + A)^T x = -b
\]

If the matrix is symmetric, the system becomes

\[
2Ax = -b
\]