Exercise: First Steps in Octave/Matlab

Exercise 1: Getting Started

1. Download and install Octave onto your computer (e.g. from http://www.gnu.org/ software/octave/download.html). There are pre-built binaries for most common operating systems.
2. Start the program. You should see a prompt in a shell such as octave-3.4.0:1>.
3. Verify the installation by typing octave-3.4.0:1> $1+1$ (or alike). You should get an answer of the form ans $=2$.
4. Verify the graphical output by typing octave-3.4.0:2> plot(1:10). A window should pop up showing a diagonal line from one to ten.
5. Download the librobotics library from http://srl.informatik.unifreiburg.de/downloads. Unpack and add it to your path by using the command addpath('yourpath/librobotics');
6. Verify the system by typing octave-3.4.0:3> help drawrobot. A help text should appear that describes the interface of the librobotics-specific command drawrobot.
7. You are ready to go!

Exercise 2: Vectors and Matrices

1. Vectors: Create a row vector: $a=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$. Display the transpose by typing a '. Create a column vector: $\mathrm{b}=[0 ; 1 ; 2 ; 3 ; 4]$. Display the transpose. Without further notice we will assume all vectors being column vectors.
2. Ranges: Create a range of values from 1 to 10 : $r 1=1: 10$. Introduce a non-integer stride: $r 2=1: 0.2: 10$. Create a linearly spaced row vector $r 3$ of equally spaced points using linspace. Get help, help linspace, then define a range of 100 points between 0 and 2π including the limits 0 and 2π. Try to suppress unwanted outputs to the shell using semicolon ;
3. Vector operations: Multiply vector a with itself: a*a. Explain the result. Multiply a elementwise with itself: a.*a. Try also: a.^3. Let us now compute the inner product of two vectors by typing $\mathrm{a} * \mathrm{~b}$, the result is a scalar. Compute the cross product cross $(a(1: 3), b(1: 3))$, the result is a vector. Finally, compute the outer product, the result is a matrix. Assign the result to M.
4. List the variables that are on your workspace by typing whos. There should be (among others perhaps) a, b, r1, r2, r3, M.
5. Matrices: Get the 2nd row of M, then get its 4th column by using the colon operator :. Get a submatrix from M, e.g. the one that contains the 1st, 3rd and 5 th row and the three last columns. Note that you can use 3 : end to index the columns.
6. Matrix operations: Compute the rank of matrix M, explain the result. Compute the determinant of M, explain the result. To look for built-in commands, use tab completion and the help system.
7. Relational operators: Assign all elements of M greater than 9 the value -1 .
8. Size: Get familiar with the size command, display the sizes of $a, b, r 3$, M. Make use of the second argument of size. Create a matrix of ones in the size of M, create a matrix of normally distributed random numbers in the size of M.
9. Solving linear equation systems: Let us now define matrix $A=\left[\begin{array}{ll}1 & 2\end{array}\right.$ 3; $456 ; 7810$] and redefine vector b to be a 3-by-1 column vector of ones. To solve the system $A x=b$, we can use the built-in backslash operator \backslash. Given that the number of equations equals the number of unknowns, we obtain the exact solution by $\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$. Verify correctness by computing the residual vector $\mathrm{r}=\mathrm{b}-\mathrm{A} * \mathrm{x}$. The same operator also applies for over- and underdetermined equation systems, see below.

Exercise 3: Plotting in 2D

1. Define a range of x-values, let's say between -4 and 4 . Compute sine, cosine, arctangent, and a 3rd order polynomial on this interval. For the polynomial, use elementwise operations $\mathrm{y}=\mathrm{x}+0.3 * \mathrm{x} .{ }^{\wedge} 2-0.05 * \mathrm{x} . \wedge 3$. Open a figure window by typing figure(1) and plot the functions into the same window.
2. Add title, axis labels, and a legend.
3. Familiarize yourself with plot. Note the line style options that the command offers.

Exercise 4: Functions and Scripts, More Plotting

1. Functions: Start a text editor of your choice. We will now define our first function, plotcircle. The function shall take three arguments, the x - and y-coordinates of the center of a circle and its radius. Since function m-files must be named after the function they contain, save the file as plotcircle.m.
2. Hint: After defining the function header, create a range of angles and call plot with two properly defined vectors of x - and y -values.
3. Scripts: Create another file, the script from which we call plotcircle.m. We use UpperCamelCase notation for scripts, so call it PlotCircleDemo.m. In the script, open a new figure window, write an example call of plotcircle and execute the script. Use the command axis to adjust the axes or the aspect ratio if needed. Redefine the function to take an additional color input argument col. The argument should be a 3 -by- 1 row vector of RGB-values. In the function, change the plot command to plot(x, y, ' Color ', col). Then write a for-loop in the script with randomized radii, positions and RGB-colors and create some post-modern art.
4. Solving linear equation systems (cont.): We will now solve an overdetermined linear equation system using the pseudoinverse A^{+}of a matrix. The pseudoinverse computes a 'best fit' solution to a overdetermined system of linear equations in a least-squares sense. We will use this to fit of a circle to points in Cartesian coordinates.
Given a set of n points $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$, we parameterize the problem by the vector of unknowns $x=\left(\begin{array}{lll}x_{c} & y_{c} & x_{c}^{2}+y_{c}^{2}-r_{c}^{2}\end{array}\right)^{T}$ with x_{c}, y_{c} and r_{c} being the circle center and radius. We then establish the overdetermined equation system $A x=b$ with elements

$$
A=\left(\begin{array}{ccc}
-2 x_{1} & -2 y_{1} & 1 \\
-2 x_{2} & -2 y_{2} & 1 \\
\vdots & \vdots & \vdots \\
-2 x_{n} & -2 y_{n} & 1
\end{array}\right) \quad b=\left(\begin{array}{c}
-x_{1}^{2}-y_{1}^{2} \\
-x_{2}^{2}-y_{2}^{2} \\
\vdots \\
-x_{n}^{2}-y_{n}^{2}
\end{array}\right)
$$

and, assuming A has full rank, solve it by

$$
x=A^{+} b \quad \text { with } \quad A^{+}=\left(A^{T} A\right)^{-1} A^{T} .
$$

The first step is to create the matrix that holds our points in Cartesian coordinates. In a new script, called FitCircleDemo.m, type P = [0 2579 3; 778757]; All x-values are in the first, all y-values are in the second row. Build up the matrix A and vector b. Preallocate the elements using the command zeros. Then solve the system as shown above and assign the result to x 1 . Solve the system using the command pinv and assign the result to x 2 . Solve the system with the backslash operator, assign it to $x 3$. Compare the results.
5. In the script, open a figure window and plot the points. If you want them to display as large green dots, type plot(x,y,'g.', 'MarkerSize', 20) ; Add hold on to avoid that subsequent plot commands erase the figure content again. Extract the circle parameters from x and plot the best fit circle. Does the result make sense?

Exercise 5: Plotting using librobotics, Printing

1. Finally, we want to use librobotics to generate a figure of a robot that drives through an environment modeled as a set of landmarks and store it as an .eps file. Create a new script file, give it an appropriate name, and make sure the path is properly set to include the library. In the first lines, you should open a figure window, and allow superimposed plotting using hold. Set the random seed with rand('seed', 2);
2. Generate ten randomly distributed 2D landmark poses: $x=5 * r a n d(3,10) ;$. Plot a reference frame at each pose with label ' E ', size 0.5 and black color (command drawreference). We assume the landmark positions to be uncertain, modeled as normally distributed random variables. To visualize their uncertainty, we plot, at the same positions than the landmarks, Gaussian error ellipses at a significance level of 0.95 with covariance matrices generated by diag $(0.02 * r a n d(3,1))$. Use drawprobellipse and, say, blue color.
3. Plot the robot and a (hypothesized) trajectory: drawtransform([1 5], [3 2.6], '\','', [0 0.5 0]); and drawrobot([2.95 2.4 -pi/2],'k');. You might want to normalize the axis now using axis equal; . Execute the script.
4. We finally generate an .eps file because we want to include it into a paper or report that we are writing. This is done using the print command. In the shell, type print -depsc myfilename.eps. Look at the file with an eps-viewer or alike. The command can also be part of your script, then the arguments form a comma-separated list of strings: print('-depsc','myfilename.eps');
