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Vectors 

§  Arrays of numbers 
§  Vectors represent a point in a n dimensional 

space 



Vectors: Scalar Product 

§  Scalar-Vector Product 
§  Changes the length of the vector, but not 

its direction 



Vectors: Sum 

§  Sum of vectors (is commutative) 

§  Can be visualized as “chaining” the vectors. 



Vectors: Dot Product 

§  Inner product of vectors (is a scalar) 

§  If one of the two vectors, e.g.   , has          , 
the inner product       returns the length of 
the projection of    along the direction of 

§  If             , the 
two vectors are 
orthogonal 



§  A vector    is linearly dependent from    
                  if  

§  In other words, if     can be obtained by 
summing up the     properly scaled 

§  If there exist no       such that                 
then     is independent from 

Vectors: Linear (In)Dependence 
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Vectors: Linear (In)Dependence 



Matrices 

§  A matrix is written as a table of values 

 
§  1st index refers to the row  
§  2nd index refers to the column 
§  Note: a d-dimensional vector is equivalent 

to a dx1 matrix 

columns rows 



Matrices as Collections of 
Vectors 

§  Column vectors 



Matrices as Collections of 
Vectors 

§  Row vectors 



Important Matrices Operations 

§  Multiplication by a scalar 
§  Sum (commutative, associative) 
§  Multiplication by a vector 
§  Product (not commutative) 
§  Inversion (square, full rank) 
§  Transposition 



Scalar Multiplication & Sum 

§  In the scalar multiplication, every element 
of the vector or matrix is multiplied with the 
scalar 

§  The sum of two vectors is a vector 
consisting of the pair-wise sums of the 
individual entries 

§  The sum of two matrices is a matrix 
consisting of the pair-wise sums of the 
individual entries 



Matrix Vector Product 

§  The ith component of        is the dot 
product       . 

§  The vector        is linearly dependent from 
       with coefficients       

column vectors row vectors 



Matrix Vector Product 

§  If the column vectors of    represent a 
reference system, the product         
computes the global transformation of the 
vector    according to 

column vectors 



Matrix Matrix Product 

§  Can be defined through  
§  the dot product of row and column vectors 
§  the linear combination of the columns of A 

scaled by the coefficients of the columns of B 



Matrix Matrix Product 

§  If we consider the second interpretation, 
we see that the columns of C are the  
“global transformations” of the columns  
of B through A 

§  All the interpretations made for the matrix 
vector product hold 



Linear Systems (1) 

Interpretations: 
§  A set of linear equations 
§  A way to find the coordinates x in the 

reference system of A such that b is the 
result of the transformation of Ax 

§  Solvable by Gaussian elimination  
(as taught in school) 



Linear Systems (2) 

Notes: 
§  Many efficient solvers exit, e.g., conjugate 

gradients, sparse Cholesky decomposition  
§  One can obtain a reduced system (A’, b’) by 

considering the matrix (A, b) and suppressing all 
the rows which are linearly dependent 

§  Let A'x=b' the reduced system with A':n'xm and 
b':n'x1 and rank A' = min(n',m) 

§  The system might be either over-constrained 
(n’>m) or under-constrained (n’<m) 
 

columns rows 



Over-Constrained Systems 
§  “More (indep) equations than variables” 
§  An over-constrained system does not 

admit an exact solution 
§  However, if   rank A’ = cols(A)   one may 

find a minimum norm solution by 
closed form pseudo inversion 

 

Note: rank = Maximum number of linearly independent rows/columns 
 



Under-Constrained Systems 

§  “More variables than (indep) equations” 
§  The system is under-constrained if the 

number of linearly independent rows (or 
columns) of A’  is smaller than the 
dimension of b’ 

§  An under-constrained system admits infinite 
solutions 

§  The degree of these infinite solutions is 
cols(A’) - rows(A’) 



Inverse 

§  If A is a square matrix of full rank, then 
there is a unique matrix B=A-1 such that 
AB=I holds 

§  The ith row of A is and the jth column of A-1 

are: 
§   orthogonal (if i ≠ j) 
§   or their dot product is 1 (if i = j) 



Matrix Inversion 

§  The ith column of A-1  can be found by 
solving the following linear system: 

This is the ith column 
of the identity matrix 



§  Only defined for square matrices  
§  Sum of the elements on the main diagonal, that is 

§  It is a linear operator with the following properties  
§  Additivity:  
§  Homogeneity: 
§  Pairwise commutative: 

§  Trace is similarity invariant  

§  Trace is transpose invariant  

§  Given two vectors a and b, tr(aT b)=tr(a bT) 

Trace (tr) 

b l a



§  Maximum number of linearly independent rows (columns) 
§  Dimension of the image of the transformation 

§  When     is          we have 
§                     and the equality holds iff     is the null matrix  
§    
§         is injective iff  
§         is surjective iff 
§  if          ,        is bijective and    is invertible iff 

§  Computation of the rank is done by 
§  Gaussian elimination on the matrix 
§  Counting the number of non-zero rows 
 

Rank 

b l a



§  Only defined for square matrices  
§  The inverse of     exists if and only if 
§  For         matrices: 

 Let               and                   , then 
 
 
 
 
§  For         matrices the Sarrus rule holds: 

Determinant (det) 



§  For general          matrices? 

 Let       be the submatrix obtained from  
by deleting the i-th row and the j-th column 

 
 
 
 
 

 Rewrite determinant for         matrices: 

Determinant 



§  For general          matrices? 

Let                                 be the (i,j)-cofactor, then 
 
 
 
 
 
This is called the cofactor expansion across the first row  

Determinant 



§  Problem: Take a 25 x 25 matrix (which is considered small). 
The cofactor expansion method requires n! multiplications. 
For n = 25, this is 1.5 x 10^25 multiplications for which a 
today supercomputer would take 500,000 years. 

 
§  There are much faster methods, namely using Gauss 

elimination to bring the matrix into triangular form. 

 

 

 

 

 Because for triangular matrices the determinant is the 
product of diagonal elements 

  

Determinant 



Determinant: Properties  
§  Row operations (    is still a          square matrix) 

§  If    results from    by interchanging two rows, 
then 

§  If    results from    by multiplying one row with a number   , 
then 

§  If    results from    by adding a multiple of one row to another 
row, then 

§  Transpose: 

§  Multiplication: 

§  Does not apply to addition! 



Determinant: Applications 
§  Find the inverse        using Cramer’s rule 

 with           being the adjugate of 
 
 
 
 
 
 
 

 with Cij being the cofactors of A, i.e., 
 



Determinant: Applications 
§  Find the inverse        using Cramer’s rule 

 with           being the adjugate of 
 
§  Compute Eigenvalues: 

 Solve the characteristic polynomial 
 
§  Area and Volume:  

(    is i-th row) 



§  A matrix     is orthonormal iff its column (row) 
vectors represent an orthonormal basis 

§  As linear transformation, it is norm preserving 

§  Some properties: 
§  The transpose is the inverse 
§  Determinant has unity norm (± 1) 

Orthonormal Matrix 



§  A Rotation matrix is an orthonormal matrix with det =+1 
 
§  2D Rotations 

§  3D Rotations along the main axes 

§  IMPORTANT: Rotations are not commutative 

  
 
 
  
 

Rotation Matrix 



Matrices to Represent Affine 
Transformations 
§  A general and easy way to describe a 3D 

transformation is via matrices 

§  Takes naturally into account the non-
commutativity of the transformations 

§  See: homogeneous coordinates 

Rotation Matrix 

Translation Vector 



Combining Transformations 
§  A simple interpretation: chaining of transformations 

(represented as homogeneous matrices) 
§  Matrix A represents the pose of a robot in the space 
§  Matrix B represents the position of a sensor on the robot 
§  The sensor perceives an object at a given location p, in 

its own frame [the sensor has no clue on where it is in the 
world] 

§  Where is the object in the global frame? 

p
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Bp gives the pose of the 
object wrt the robot 



Combining Transformations 
§  A simple interpretation: chaining of transformations 

(represented as homogeneous matrices) 
§  Matrix A represents the pose of a robot in the space 
§  Matrix B represents the position of a sensor on the robot 
§  The sensor perceives an object at a given location p, in 

its own frame [the sensor has no clue on where it is in the 
world] 

§  Where is the object in the global frame? 
B

Bp gives the pose of the 
object wrt the robot 

ABp gives the pose of the 
object wrt the world 

A



§  A matrix     is symmetric if            , e.g. 

§  A matrix     is skew-symmetric if             , e.g. 

§  Every symmetric matrix: 
§  is diagonalizable                  , where     is a diagonal matrix 

of eigenvalues and     is an orthogonal matrix whose columns 
are the eigenvectors of  

§  define a quadratic form 

Symmetric Matrix 

b l a



§  The analogous of positive number 

§  Definition 

§  Example 

§    

 

Positive Definite Matrix 



§  Properties 
§  Invertible, with positive definite inverse 
§  All real eigenvalues > 0 
§  Trace is > 0 
§  Cholesky decomposition 

  
  

Positive Definite Matrix 



Jacobian Matrix 

§  It is a non-square matrix           in general 

§  Given a vector-valued function 

 

§  Then, the Jacobian matrix is defined as 



§  It is the orientation of the tangent 
plane to the vector-valued function at a 
given point 

 

 

§  Generalizes the gradient of a scalar 
valued function  

 

Jacobian Matrix 



Quadratic Forms 

§  Many functions can be locally approximated 
with quadratic form 

§  Often, one is interested in finding the 
minimum (or maximum) of a quadratic 
form, i.e., 



Quadratic Forms 

§  Question: How to efficiently compute a 
solution to this minimization problem 

§  At the minimum, we have  
§  By using the definition of matrix product,  

we can compute f’ 



Quadratic Forms 

§  The minimum of                         is 
where its derivative is 0 

§  Thus, we can solve the system 

§  If the matrix is symmetric, the system 
becomes  

§  Solving that, leads to the minimum 



Further Reading 

§  A “quick and dirty” guide to matrices is the 
Matrix Cookbook available at: 
 http://matrixcookbook.com 


