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Vectors

= Arrays of numbers

= Vectors represent a point in a n dimensional
space

aq a2
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an :

an ai



Vectors: Scalar Product

= Scalar-Vector Product ka
= Changes the length of the vector, but not

its direction
/ka
an

ai




Vectors: Sum

= Sum of vectors (is commutative)

a1 [ b1 by a1
a.n \ b.n b.n a-n

= Can be visualized as “chaining” the vectors.




Vectors: Dot Product

= Inner product of vectors (is a scalar)
a-b=b-a=Zaibi
1

= If one of the two vectors, e.g.a, hasl|la|| =1
the inner product a - breturns the length of
the projection of b along the direction of a

= Ifa-b =0, the
two vectors are
orthogonal




Vectors: Linear (In)Dependence

= A vector b is linearly dependent from
{aj,a,...,an} if b= > ksa;

= In other words, if bi can be obtained by
summing up the a; properly scaled

= If there exist no {k;} such that b =) k;a;
then b is indepen;lent from {a;} i
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Vectors: Linear (In)Dependence
= A vector b is linearly dependent from
{aj,a,...,an} if b= > ksa;

= In other words, if bi can be obtained by
summing up the a; properly scaled

= If there exist no {k;} such that b =) k;a,
then b is independent from {a;} ¢
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Matrices

= A matrix is written as a table of values

(a11 a12 -+ aim )
a a ¢ o o a
A= @ a2 e | g,
: 0 TI
\anl apo - anm} rows columns

= 1St jndex refers to the row
= 2nd jndex refers to the column

= Note: a d-dimensional vector is equivalent
to a dx1 matrix



Matrices as Collections of
Vectors

= Column vectors

(a*l AxD a*m)
([a11] [a12] -+ |a1m| )
A = ||921]|a22] - |azm

\anl Anp2| - anm)




Matrices as Collections of
Vectors

= Row vectors

T
(la11 @12 -+ aim =/a%*\
A — | (321 @22 --- aom | A2«

\anl an2 -+ Gnm7J/ ’Kazn




Important Matrices Operations

= Multiplication by a scalar

= Sum (commutative, associative)
= Multiplication by a vector

= Product (not commutative)

= Inversion (square, full rank)

= Transposition



Scalar Multiplication & Sum

= In the scalar multiplication, every element
of the vector or matrix is multiplied with the
scalar

= The sum of two vectors is a vector
consisting of the pair-wise sums of the
individual entries

= The sum of two matrices is a matrix
consisting of the pair-wise sums of the
individual entries



Matrix Vector Product

= The ith component of A - b is the dot
product a’, - b

= The vector A - b is linearly dependent from
{a.; } with coefficients {b;}

(o) (b
A-b= a:Q* b = aQ*:-b =) a,p- by
: : :
\ag* \a£*°b)
t

row vectors column vectors



Matrix Vector Product

= If the column vectors of A represent a
reference system, the product A - b
computes the global transformation of the
vector b according to {a.;}

column vectors

biﬁ%’l
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Matrix Matrix Product

= Can be defined through
= the dot product of row and column vectors

= the linear combination of the columns of A
scaled by the coefficients of the columns of B

C = AB

T T T
( a%* by a%* bys - a%* - b \
— A0y b1 A0y by - A0y bim
\ afrj;* - b1 afzj';* byo - a,,l;* - bsm /

(A-b*l A -b,o ...A-b*m)



Matrix Matrix Product

= If we consider the second interpretation,
we see that the columns of C are the
“global transformations” of the columns
of B through A

= All the interpretations made for the matrix
vector product hold

C = AB
— (A.b*l A - b, ...A-b*m)
Cyi = A-Dby



Linear Systems (1)

Ax =Db

Interpretations:
= A set of linear equations

= A way to find the coordinates x in the

reference system of A such that b is the
result of the transformation of Ax

= Solvable by Gaussian elimination
(as taught in school)



Linear Systems (2)

Ax =Db

Notes:

= Many efficient solvers exit, e.g., conjugate
gradients, sparse Cholesky decomposition

= One can obtain a reduced system (A’ b’) by
considering the matrix (A, b) and suppressing all
the rows which are linearly dependent

= Let A'X=b’" the reduced system with A’zn'xm and
b':n'x1 and rank A' = min(n’'m) ows”? X columns

= The system might be either over-constrained
(n">m) or under-constrained (n’<m)



Over-Constrained Systems

= "More (indep) equations than variables”

= An over-constrained system does not
admit an exact solution

= However, if rank A’ = cols(A) one may
find a minimum norm solution by
closed form pseudo inversion

x = argmin [[A/x — b/|| = (A" AN 1A b
X

Note: rank = Maximum number of linearly independent rows/columns



Under-Constrained Systems

= "More variables than (indep) equations”

= The system is under-constrained if the
number of linearly independent rows (or
columns) of A’ is smaller than the
dimension of b’

= An under-constrained system admits infinite
solutions

= The degree of these infinite solutions is
cols(A”) - rows(A’)



Inverse
AB =1

= If A is a square matrix of full rank, then
there is a unique matrix B=A-1 such that
AB=1I holds

= The /" row of A is and the jt" column of A-1
are:
= orthogonal (if i =j)
= or their dot product is 1 (if /i = J)



Matrix Inversion
AB =1

= The it" column of A1 can be found by
solving the following linear system:

This is the it" column
of the identity matrix

-1
Aa 7 — Lxq



Trace (tr)

= Only defined for square matrices
= Sum of the elements on the main diagonal, that is

mn
tr(A) = a11 + ago + - - a'nn:E Qi
i—1

= Jtis a linear operator with the following properties
= Additivity:  tr(A+ B) = tr(A4) + tr(B)
= Homogeneity: tr(cA) =c x tr(A)
= Pairwise commutative: tr(AB) = tr(BA), tr(ABC) # tr(ACB)

= Trace is similarity invariant  tr(P 'AP) = tr((AP™1)P) = tr(A)
= Trace is transpose invariant  tr(4) = tr(A”)

= Given two vectors a and b, tr(a” b)=tr(a b’")



Rank

= Maximum number of linearly independent rows (columns)
= Dimension of the image of the transformation f(x) = Ax

= When A is m xn we have
= rank(A) > 0 and the equality holds iff A is the null matrix
rank(A) < min(m,n)
f(x) is injective iff rank(A) =n
f(x) is surjective iff rank(A) =m
ifm =n, f(x) is bijective and A is invertible iff rank(A) =n

= Computation of the rank is done by
= (Gaussian elimination on the matrix
= Counting the number of non-zero rows



Determinant (det)

= Only defined for square matrices
= The inverse of A exists if and only if det(A) # 0
= For 2 x 2 matrices:

Let A = [aij] and ‘A’ = d€t(A) , then

ailp; ai2
az1 Q22

= a1 - a22 —ai2 - a21

» For3 x 3 matrices the Sarrus rule holds:

11, Q12 @13 |
a1 G2 G23 | = Q11022033 1+ 412023031 + A13021a32
e

—a11023032 — A12021033 — A13022011



Determinant

= For general n x n matrices?

Let A;; be the submatrix obtained from A
by deleting the i-th row and the j-th column

1 2 5 0
1 5 0
2 3 4 -1
58 0 0 ) An- (2)_42 _01
0 4 -2 0 |

Rewrite determinant for 3 x 3 matrices:

3%3
det(A°”°) = a11022033 + a12a23a31 + A13021032

—a11a23032 — Q12021033 — 13022011
= aii - det(AH) — a9 - det(Alg) + ais - det(A13)



Determinant

= For general n x n matrices?

det(A) = andet(A11) — aradet(Ars) + ...+ (=1)'"ay, det(Aq,)
p— Z(—1)1+ja1jdet(A1j)
j=1

Let C,;; = (—1)""det(A;;) be the (ij)-cofactor, then

det(A) = a11C11 +0a12C12+ ... +a1,C1p,

mn

== Z CLlelj

j=1

This is called the cofactor expansion across the first row



Determinant

Problem: Take a 25 x 25 matrix (which is considered small).
The cofactor expansion method requires n! multiplications.
For n = 25, thisis 1.5 x 10”25 multiplications for which a
today supercomputer would take 500,000 years.

There are much faster methods, namely using Gauss
elimination to bring the matrix into triangular form.

[ dy % ok x|
. 0 d2 * S n
0 0 0 dy

Because for triangular matrices the determinant is the
product of diagonal elements



Determinant: Properties

= Row operations (A is still a n x n square matrix)

= If B results from A by interchanging two rows,
then det(B) = —det(A)

= If B results from A by multiplying one row with a number ¢,
then det(B) = c- det(A)

= If B results from A by adding a multiple of one row to another
row, then det(B) = det(A)

Transpose: det(Al) = det(A)

Multiplication: det(A - B) = det(A) - det(B)

Does not apply to addition! det(A + B) # det(A) + det(B)



Determinant: Applications

= Find the inverse A~—! using Cramer’s rule A—1

with adj(A) being the adjugate of A

adj(A) =

((C11 C21 -+ Cha
Ci2 Cop -+ O
\Cln Cop - Cnn)

with Cj; being the cofactors of A, i.e.,

Cij = (—1)z+]d€t(Aw>

adj(A)

 det(A)




Determinant: Applications

= Find the inverse A1 using Cramer'srule A~ =
with adj(A) being the adjugate of A

_ adi(A)
det(A)

= Compute Eigenvalues:
Solve the characteristic polynomial det(A — X-I) =0

= Area and Volume:

o

QS

(c.d)

(a.b)

area = |det(A)|




Orthonormal Matrix

= A matrix @ is orthonormal iff its column (row)
vectors represent an orthonormal basis

T 1 if e=y o
q*i'q*ﬂ'_{o it iy

= As linear transformation, it is norm preserving

= Some properties:
= The transpose is the inverse QQT =Q"Q =1
= Determinant has unity norm (4 1)

1 =det(l) = det(QTQ) — det(@)det(QT) = det(Q)2



Rotation Matrix

= A Rotation matrix is an orthonormal matrix with det =+1
cos(f) —sin(0)
sin(d)  cos(0)
= 3D Rotations along the main axes

1 0 0

0 cos(f) —sin(6)
0 sin(f) cos(0)

= IMPORTANT: Rotations are not commutative

_ _[omr 0 —0707 _ T [ 1414
Ry(5)-Ry(=)=| =05 0707 —05 |, Ry(=)-Ry(>)| 2 | =] 0.586
4 4 4 TR

= 2D Rotations R(6) = [

0 1 0
sin(fd) 0 cos(0)

R.(0) = R,(0) =

{cos(@) 0 sin(é’)}

05 0707 05 | | 3414
. - [ 0.707 —0.5 —0.5 ] - . 1] [ —1.793 ]

0707 05 0.5 3 3.207




Matrices to Represent Affine
Transformations

= A general and easy way to describe a 3D
transformation is via matrices

Translation Vector

(B (e ()

Rotation Matrix

= Takes naturally into account the non-
commutativity of the transformations

= See: homogeneous coordinates



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

p



Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?

@ Bp gives the pose of the
object wrt the robot

0




Combining Transformations

= A simple interpretation: chaining of transformations
(represented as homogeneous matrices)
= Matrix A represents the pose of a robot in the space
= Matrix B represents the position of a sensor on the robot

= The sensor perceives an object at a given location p, in
its own frame [the sensor has no clue on where it is in the

world]
= Where is the object in the global frame?
0. o Bp gives the pose of the

object wrt the robot

&8

ABp gives the pose of the
object wrt the world




Symmetric Matrix

1 4 =2
= A matrix 4 is symmetricif 4 =47 ,e.g.| 4 -1 3
-2 3 5
_ _ o 0 4 =2
= A matrix A is skew-symmetricif 4 =-4",e.g.| _4 (o 3
2 -3 0

= Every symmetric matrix:

is diagonalizable D = QAQ", where D is a diagonal matrix
of eigenvalues and () is an orthogonal matrix whose columns
are the eigenvectors of 4

n
define a quadratic form ¢(x) =x' Ax = Z Wi T
iy,J=1



Positive Definite Matrix

= The analogous of positive number

» Definition M > 0iff 2/ Mz > 0vz £ 0

= Example



Positive Definite Matrix

= Properties
= Invertible, with positive definite inverse

= All real eigenvalues > 0
= Trace is > 0
= Cholesky decomposition A = [LI.,7



Jacobian Matrix

= [tis a non-square matrix n x m in general

= Given a vector-valued function

[ f1(x) |
foo = | 29

i fm.(X) i

= Then, the Jacobian matrix is defined as

[ 0f1 Of1 of1 |
dr1 OJOxpo " Oxp
dfz  9f> df2

Fyx = | 9z1 OJzp *°° Oup
Ofm Ofm Ofm
| Oxrp Ozp 77 Oxp




Jacobian Matrix

= It is the orientation of the tangent
plane to the vector-valued function at a
given point

= Generalizes the gradient of a scalar
valued function



Quadratic Forms

= Many functions can be locally approximated
with quadratic form

f(X) — Z Qg5 LiL g + Z biCIZi +c
1,9 1
= xTAx + bx + ¢
= Often, one is interested in finding the

minimum (or maximum) of a quadratic
form, i.e.,

X = argmin f(x)
X



Quadratic Forms
= Question: How to efficiently compute a
solution to this minimization problem

X = argmin f(x)
X

= At the minimum, we have (%) =0

= By using the definition of matrix product,
we can compute f’

XTAX—l—bX—|—C
ATx—I—Ax—|—b

f(x)
ey



Quadratic Forms

= The minimum of f(x) = x'Ax+bx+c is

where its derivative is O
0 = Alx + Ax+ Db
= Thus, we can solve the system
(AT 4+ A)x = —b

= If the matrix is symmetric, the system
becomes

2Ax = —Db

= Solving that, leads to the minimum



Further Reading

= A "quick and dirty” guide to matrices is the
Matrix Cookbook available at:

http://matrixcookbook.com




