Advanced Techniques for Mobile Robotics

Compact Course on Linear Algebra

Wolfram Burgard, Cyrill Stachniss,
Kai Arras, Maren Bennewitz

Vectors

- Arrays of numbers
- Vectors represent a point in a n dimensional space

Vectors: Scalar Product

- Scalar-Vector Product $k \mathbf{a}$
- Changes the length of the vector, but not its direction

Vectors: Sum

- Sum of vectors (is commutative)

$$
\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)+\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)+\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

- Can be visualized as "chaining" the vectors.

Vectors: Dot Product

- Inner product of vectors (is a scalar)

$$
\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}=\sum_{i} a_{i} b_{i}
$$

- If one of the two vectors, e.g. \mathbf{a}, has $\|\mathbf{a}\|=1$ the inner product a \cdot breturns the length of the projection of b along the direction of a

- If $\mathbf{a} \cdot \mathrm{b}=0$, the two vectors are orthogonal

Vectors: Linear (In)Dependence

- A vector b is linearly dependent from $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ if $\mathbf{b}=\sum_{i} k_{i} \mathbf{a}_{i}$
- In other words, if b^{i} can be obtained by summing up the a_{i} properly scaled
- If there exist no $\left\{k_{i}\right\}$ such that $\mathbf{b}=\sum k_{i} \mathbf{a}_{i}$ then \mathbf{b} is independent from $\left\{\mathbf{a}_{i}\right\}$

Vectors: Linear (In)Dependence

- A vector \mathbf{b} is linearly dependent from $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ if $\mathbf{b}=\sum_{i} k_{i} \mathbf{a}_{i}$
- In other words, if b^{i} can be obtained by summing up the a_{i} properly scaled
- If there exist no $\left\{k_{i}\right\}$ such that $\mathbf{b}=\sum k_{i} \mathbf{a}_{i}$ then \mathbf{b} is independent from $\left\{\mathbf{a}_{i}\right\}$

Matrices

- A matrix is written as a table of values
- $1^{\text {st }}$ index refers to the row
- $2^{\text {nd }}$ index refers to the column
- Note: a d-dimensional vector is equivalent to a dx1 matrix

Matrices as Collections of Vectors

- Column vectors

$$
\mathbf{A}=\left(\begin{array}{cccc}
\left(\begin{array}{cccc}
\mathbf{a}_{* 1} & \mathbf{a}_{* 2} & \cdots & \mathbf{a}_{* m}
\end{array}\right) \\
\left(\begin{array}{c|c|c|c}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} \\
\vdots \\
a_{n 1} & a_{22} & \cdots & a_{2 m} \\
a_{n 2} & \cdots & a_{n m}
\end{array}\right)
\end{array}\right.
$$

Matrices as Collections of Vectors

- Row vectors

$$
\mathbf{A}=\left(\begin{array}{cccc}
\left.\begin{array}{|ccc}
a_{11} & a_{12} & \cdots \\
\hline a_{21} & a_{22} & \cdots \\
a_{1 m} \\
\vdots & & \\
\hline a_{n 1} & a_{n 2} & \cdots \\
\hline
\end{array}\right) \quad a_{n m}
\end{array}\right) \longrightarrow\left(\begin{array}{c}
\mathbf{a}_{1 *}^{T} \\
\mathbf{a}_{2 *}^{T} \\
\vdots \\
\mathbf{a}_{* n}^{T}
\end{array}\right)
$$

Important Matrices Operations

- Multiplication by a scalar
- Sum (commutative, associative)
- Multiplication by a vector
- Product (not commutative)
- Inversion (square, full rank)
- Transposition

Scalar Multiplication \& Sum

- In the scalar multiplication, every element of the vector or matrix is multiplied with the scalar
- The sum of two vectors is a vector consisting of the pair-wise sums of the individual entries
- The sum of two matrices is a matrix consisting of the pair-wise sums of the individual entries

Matrix Vector Product

- The $i^{\text {th }}$ component of $\mathbf{A} \cdot \mathrm{b}$ is the dot product $\mathbf{a}_{i *}^{T} \cdot \mathbf{b}$
- The vector $\mathbf{A} \cdot \mathbf{b}$ is linearly dependent from $\left\{\mathbf{a}_{* i}\right\}$ with coefficients $\left\{b_{i}\right\}$

$$
\mathbf{A} \cdot \mathbf{b}=\left(\begin{array}{c}
\mathbf{a}_{1 *}^{T} \\
\mathbf{a}_{2 *}^{T} \\
\vdots \\
\mathbf{a}_{n *}^{T}
\end{array}\right) \cdot \mathbf{b}=\left(\begin{array}{c}
\mathbf{a}_{1 *}^{T} \cdot \mathbf{b} \\
\mathbf{a}_{2 *}^{T} \cdot \mathbf{b} \\
\vdots \\
\mathbf{a}_{n *}^{T} \cdot \mathbf{b} \\
\uparrow
\end{array}\right)=\sum_{k}{\underset{\sim}{\text { row vectors }}}_{\left(\mathbf{a}_{* k} \cdot b_{k}\right.} \quad \underset{\text { column vectors }}{ }
$$

Matrix Vector Product

- If the column vectors of A represent a reference system, the product A • b computes the global transformation of the vector \mathbf{b} according to $\left\{\mathbf{a}_{* i}\right\}$
column vectors

Matrix Matrix Product

- Can be defined through
- the dot product of row and column vectors
- the linear combination of the columns of \boldsymbol{A} scaled by the coefficients of the columns of \boldsymbol{B}
$\mathrm{C}=\mathrm{AB}$

$$
\begin{aligned}
& =\left(\begin{array}{cccc}
\mathbf{a}_{1 *}^{T} \cdot \mathbf{b}_{* 1} & \mathbf{a}_{1 *}^{T} \cdot \mathbf{b}_{* 2} & \cdots & \mathbf{a}_{1 *}^{T} \cdot \mathbf{b}_{* m} \\
\mathbf{a}_{2 *}^{T} \cdot \mathbf{b}_{* 1} & \mathbf{a}_{2 *}^{T} \cdot \mathbf{b}_{* 2} & \cdots & \mathbf{a}_{2 *}^{T} \cdot \mathbf{b}_{* m} \\
\vdots & & & \\
\mathbf{a}_{n *}^{T} \cdot \mathbf{b}_{* 1} & \mathbf{a}_{n *}^{T} \cdot \mathbf{b}_{* 2} & \cdots & \mathbf{a}_{n *}^{T} \cdot \mathbf{b}_{* m}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\mathbf{A} \cdot \mathbf{b}_{* 1} & \mathbf{A} \cdot \mathbf{b}_{* 2} & \ldots \mathbf{A} \cdot \mathbf{b}_{* m}
\end{array}\right)
\end{aligned}
$$

Matrix Matrix Product

- If we consider the second interpretation, we see that the columns of \boldsymbol{C} are the "global transformations" of the columns of \boldsymbol{B} through \boldsymbol{A}
- All the interpretations made for the matrix vector product hold

$$
\begin{aligned}
\mathbf{C} & =\mathbf{A B} \\
& =\left(\begin{array}{lll}
\mathbf{A} \cdot \mathbf{b}_{* 1} & \mathbf{A} \cdot \mathbf{b}_{* 2} & \ldots \mathbf{A} \cdot \mathbf{b}_{* m}
\end{array}\right) \\
\mathbf{c}_{* i} & =\mathbf{A} \cdot \mathbf{b}_{* i}
\end{aligned}
$$

Linear Systems (1)

$\mathrm{Ax}=\mathrm{b}$

Interpretations:

- A set of linear equations
- A way to find the coordinates \boldsymbol{x} in the reference system of \boldsymbol{A} such that \boldsymbol{b} is the result of the transformation of $\boldsymbol{A x}$
- Solvable by Gaussian elimination (as taught in school)

Linear Systems (2)

$\mathrm{Ax}=\mathrm{b}$

Notes:

- Many efficient solvers exit, e.g., conjugate gradients, sparse Cholesky decomposition
- One can obtain a reduced system ($\boldsymbol{A}^{\prime}, \boldsymbol{b}^{\prime}$) by considering the matrix $(\boldsymbol{A}, \boldsymbol{b})$ and suppressing all the rows which are linearly dependent
- Let \boldsymbol{A} ' $\boldsymbol{x}=\boldsymbol{b}^{\prime}$ the reduced system with \boldsymbol{A} ': n 'xm and $\boldsymbol{b}^{\prime}: n^{\prime} x 1$ and rank $\mathbf{A}^{\prime}=\min \left(n^{\prime}, m\right)$ rows ${ }^{\wedge} \quad{ }^{\top}$ columns
- The system might be either over-constrained ($n^{\prime}>m$) or under-constrained ($n^{\prime}<m$)

Over-Constrained Systems

- "More (indep) equations than variables"
- An over-constrained system does not admit an exact solution
- However, if $\operatorname{rank} \boldsymbol{A}^{\prime}=\operatorname{cols}(\boldsymbol{A})$ one may find a minimum norm solution by closed form pseudo inversion

$$
\mathbf{x}=\underset{\mathbf{x}}{\operatorname{argmin}}\left\|\mathbf{A}^{\prime} \mathbf{x}-\mathbf{b}^{\prime}\right\|=\left(\mathbf{A}^{\prime T} \mathbf{A}^{\prime}\right)^{-1} \mathbf{A}^{\prime T} \mathbf{b}^{\prime}
$$

Note: rank = Maximum number of linearly independent rows/columns

Under-Constrained Systems

- "More variables than (indep) equations"
- The system is under-constrained if the number of linearly independent rows (or columns) of \boldsymbol{A}^{\prime} is smaller than the dimension of \boldsymbol{b}^{\prime}
- An under-constrained system admits infinite solutions
- The degree of these infinite solutions is $\operatorname{cols}\left(\boldsymbol{A}^{\prime}\right)-\operatorname{rows}\left(\boldsymbol{A}^{\prime}\right)$

Inverse

$\mathrm{AB}=\mathrm{I}$

- If A is a square matrix of full rank, then there is a unique matrix $\boldsymbol{B}=\boldsymbol{A}^{\mathbf{- 1}}$ such that $\boldsymbol{A B}=\boldsymbol{I}$ holds
- The $j^{\text {th }}$ row of \boldsymbol{A} is and the $j^{\text {th }}$ column of $\boldsymbol{A}^{\mathbf{- 1}}$ are:
- orthogonal (if $i \neq j$)
- or their dot product is 1 (if $i=j$)

Matrix Inversion

$\mathrm{AB}=\mathrm{I}$

- The $i^{\text {th }}$ column of $\boldsymbol{A}^{-\mathbf{1}}$ can be found by solving the following linear system:

$$
\mathbf{A a}^{-\mathbf{1}}{ }_{* i}=\mathbf{i}_{* i} \underbrace{\text { This the ith column }}_{\substack{\text { of the identity matrix }}}
$$

Trace (tr)

- Only defined for square matrices
- Sum of the elements on the main diagonal, that is

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}=\sum_{i=1}^{n} a_{i i}
$$

- It is a linear operator with the following properties
- Additivity: $\quad \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- Homogeneity: $\operatorname{tr}(c A)=c \times \operatorname{tr}(A)$
- Pairwise commutative: $\quad \operatorname{tr}(A B)=\operatorname{tr}(B A), \quad \operatorname{tr}(A B C) \neq \operatorname{tr}(A C B)$
- Trace is similarity invariant

$$
\operatorname{tr}\left(P^{-1} A P\right)=\operatorname{tr}\left(\left(A P^{-1}\right) P\right)=\operatorname{tr}(A)
$$

- Trace is transpose invariant $\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$
- Given two vectors \mathbf{a} and $\boldsymbol{b}, \operatorname{tr}\left(\mathbf{a}^{\top} \boldsymbol{b}\right)=\operatorname{tr}\left(\mathbf{a} \mathbf{b}^{\top}\right)$

Rank

- Maximum number of linearly independent rows (columns)
- Dimension of the image of the transformation $f(\mathbf{x})=A \mathbf{x}$
- When A is $m \times n$ we have
- $\operatorname{rank}(A) \geq 0$ and the equality holds iff A is the null matrix
- $\operatorname{rank}(A) \leq \min (m, n)$
- $f(\mathbf{x})$ is injective iff $\operatorname{rank}(A)=n$
- $f(\mathbf{x})$ is surjective iff $\operatorname{rank}(A)=m$
- if $m=n, f(\mathbf{x})$ is bijective and A is invertible iff $\operatorname{rank}(A)=n$
- Computation of the rank is done by
- Gaussian elimination on the matrix
- Counting the number of non-zero rows

Determinant (det)

- Only defined for square matrices
- The inverse of \mathbf{A} exists if and only if $\operatorname{det}(\mathbf{A}) \neq 0$
- For 2×2 matrices:

Let $\mathbf{A}=\left[a_{i j}\right]$ and $|\mathbf{A}|=\operatorname{det}(\mathbf{A})$, then

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} \cdot a_{22}-a_{12} \cdot a_{21}
$$

- For 3×3 matrices the Sarrus rule holds:

$$
\left|\begin{array}{l}
\left|\begin{array}{l}
a_{11}> \\
a_{21} \\
a_{22} \\
a_{31} \\
a_{13} \\
a_{32}
\end{array}\right|= \\
a_{33}
\end{array}\right|=\begin{aligned}
& a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& \\
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{11}
\end{aligned}
$$

Determinant

- For general $n \times n$ matrices?

Let $\mathbf{A}_{i j}$ be the submatrix obtained from \mathbf{A} by deleting the i-th row and the j-th column

$$
\left[\begin{array}{cccc}
1 & 2 & 5 & 0 \\
2 & 3 & 4 & -1 \\
-5 & 8 & 0 & 0 \\
0 & 4 & -2 & 0
\end{array}\right] \quad \square \quad \mathbf{A}_{32}=\left[\begin{array}{ccc}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

Rewrite determinant for 3×3 matrices:

$$
\begin{aligned}
\operatorname{det}\left(\mathbf{A}^{3 \times 3}\right)= & a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \\
& -a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{11} \\
= & a_{11} \cdot \operatorname{det}\left(\mathbf{A}_{11}\right)-a_{12} \cdot \operatorname{det}\left(\mathbf{A}_{12}\right)+a_{13} \cdot \operatorname{det}\left(\mathbf{A}_{13}\right)
\end{aligned}
$$

Determinant

- For general $n \times n$ matrices?

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =a_{11} \operatorname{det}\left(\mathbf{A}_{11}\right)-a_{12} \operatorname{det}\left(\mathbf{A}_{12}\right)+\ldots+(-1)^{1+n} a_{1 n} \operatorname{det}\left(\mathbf{A}_{1 n}\right) \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det}\left(\mathbf{A}_{1 j}\right)
\end{aligned}
$$

Let $\mathbf{C}_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)$ be the (i, j)-cofactor, then

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =a_{11} \mathbf{C}_{11}+a_{12} \mathbf{C}_{12}+\ldots+a_{1 n} \mathbf{C}_{1 n} \\
& =\sum_{j=1}^{n} a_{1 j} \mathbf{C}_{1 j}
\end{aligned}
$$

This is called the cofactor expansion across the first row

Determinant

- Problem: Take a 25×25 matrix (which is considered small). The cofactor expansion method requires n ! multiplications. For $\mathrm{n}=25$, this is $1.5 \times 10^{\wedge} 25$ multiplications for which a today supercomputer would take 500,000 years.
- There are much faster methods, namely using Gauss elimination to bring the matrix into triangular form.

$$
\mathbf{A}=\left[\begin{array}{cccc}
d_{1} & * & * & * \\
0 & d_{2} & * & * \\
0 & 0 & d_{3} & * \\
0 & 0 & 0 & d_{4}
\end{array}\right] \quad \operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} d_{i}
$$

Because for triangular matrices the determinant is the product of diagonal elements

Determinant: Properties

- Row operations (\mathbf{A} is still a $n \times n$ square matrix)
- If B results from \mathbf{A} by interchanging two rows, then $\operatorname{det}(\mathbf{B})=-\operatorname{det}(\mathbf{A})$
- If \mathbf{B} results from \mathbf{A} by multiplying one row with a number c, then $\operatorname{det}(\mathbf{B})=c \cdot \operatorname{det}(\mathbf{A})$
- If B results from \mathbf{A} by adding a multiple of one row to another row, then $\operatorname{det}(\mathbf{B})=\operatorname{det}(\mathbf{A})$
- Transpose: $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$
- Multiplication: $\operatorname{det}(\mathbf{A} \cdot \mathbf{B})=\operatorname{det}(\mathbf{A}) \cdot \operatorname{det}(\mathbf{B})$
- Does not apply to addition! $\operatorname{det}(\mathbf{A}+\mathbf{B}) \neq \operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$

Determinant: Applications

- Find the inverse \mathbf{A}^{-1} using Cramer's rule $\mathbf{A}^{-1}=\frac{\operatorname{adj}(\mathbf{A})}{\operatorname{det}(\mathbf{A})}$
with $\operatorname{adj}(\mathbf{A})$ being the adjugate of \mathbf{A}

$$
\operatorname{adj}(\mathbf{A})=\left(\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & & & \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right)
$$

with $\boldsymbol{C}_{i j}$ being the cofactors of \boldsymbol{A}, i.e.,

$$
\mathbf{C}_{i j}=(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right)
$$

Determinant: Applications

- Find the inverse \mathbf{A}^{-1} using Cramer's rule $\mathbf{A}^{-1}=\frac{\operatorname{adj}(\mathbf{A})}{\operatorname{det}(\mathbf{A})}$
with $\operatorname{adj}(\mathbf{A})$ being the adjugate of \mathbf{A}
- Compute Eigenvalues:

Solve the characteristic polynomial $\quad \operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})=0$

- Area and Volume: \quad area $=|\operatorname{det}(\mathbf{A})|$

$\mathbf{A}=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
(r_{i} is i-th row)

Orthonormal Matrix

- A matrix Q is orthonormal iff its column (row) vectors represent an orthonormal basis

$$
q_{* i}^{T} \cdot q_{* j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}, \forall i, j\right.
$$

- As linear transformation, it is norm preserving
- Some properties:
- The transpose is the inverse $Q Q^{T}=Q^{T} Q=I$
- Determinant has unity norm (± 1)

$$
1=\operatorname{det}(I)=\operatorname{det}\left(Q^{T} Q\right)=\operatorname{det}(Q) \operatorname{det}\left(Q^{T}\right)=\operatorname{det}(Q)^{2}
$$

Rotation Matrix

- A Rotation matrix is an orthonormal matrix with det $=+1$
- 2D Rotations $\quad R(\theta)=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
- 3D Rotations along the main axes

$$
R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad R_{y}(\theta)=\left[\begin{array}{ccc}
\cos (\theta) & 0 & -\sin (\theta) \\
0 & 1 & 0 \\
\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

- IMPORTANT: Rotations are not commutative

$$
\begin{aligned}
& R_{x}\left(\frac{\pi}{4}\right) \cdot R_{y}\left(\frac{\pi}{4}\right)=\left[\begin{array}{ccc}
0.707 & 0 & -0.707 \\
-0.5 & 0.707 & -0.5 \\
0.5 & 0.707 & 0.5
\end{array}\right], R_{x}\left(\frac{\pi}{4}\right) \cdot R_{y}\left(\frac{\pi}{4}\right) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.414 \\
0.586 \\
3.414
\end{array}\right] \\
& R_{y}\left(\frac{\pi}{4}\right) \cdot R_{x}\left(\frac{\pi}{4}\right)=\left[\begin{array}{ccc}
0.707 & -0.5 & -0.5 \\
0 & 0.707 & -0.707 \\
0.707 & 0.5 & 0.5
\end{array}\right], R_{y}\left(\frac{\pi}{4}\right) \cdot R_{x}\left(\frac{\pi}{4}\right) \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1.793 \\
0.707 \\
3.207
\end{array}\right]
\end{aligned}
$$

Matrices to Represent Affine Transformations

- A general and easy way to describe a 3D transformation is via matrices

- Takes naturally into account the noncommutativity of the transformations
- See: homogeneous coordinates

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \boldsymbol{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \boldsymbol{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

Combining Transformations

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
- Matrix A represents the pose of a robot in the space
- Matrix B represents the position of a sensor on the robot
- The sensor perceives an object at a given location \boldsymbol{p}, in its own frame [the sensor has no clue on where it is in the world]
- Where is the object in the global frame?

Bp gives the pose of the object wrt the robot

ABp gives the pose of the object wrt the world

Symmetric Matrix

- A matrix A is symmetric if $A=A^{T}$, e.g. $\left[\begin{array}{ccc}1 & 4 & -2 \\ 4 & -1 & 3 \\ -2 & 3 & 5\end{array}\right]$
- A matrix A is skew-symmetric if $A=-A^{T}$, e.g. $\left[\begin{array}{ccc}0 & 4 & -2 \\ -4 & 0 & 3 \\ 2 & -3 & 0\end{array}\right]$
- Every symmetric matrix:
- is diagonalizable $D=Q A Q^{T}$, where D is a diagonal matrix of eigenvalues and Q is an orthogonal matrix whose columns are the eigenvectors of A
- define a quadratic form $q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}$

Positive Definite Matrix

- The analogous of positive number
- Definition $M>0$ iff $z^{T} M z>0 \forall z \neq 0$
- Example
- $M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}z_{1} & z_{2}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=z_{1}^{2}+z_{2}^{2}>0$

Positive Definite Matrix

- Properties
- Invertible, with positive definite inverse
- All real eigenvalues >0
- Trace is > 0
- Cholesky decomposition $A=L L^{T}$

Jacobian Matrix

- It is a non-square matrix $n \times m$ in general
- Given a vector-valued function

$$
f(\mathrm{x})=\left[\begin{array}{c}
f_{1}(\mathrm{x}) \\
f_{2}(\mathrm{x}) \\
\vdots \\
f_{m}(\mathrm{x})
\end{array}\right]
$$

- Then, the Jacobian matrix is defined as

$$
\mathbf{F}_{\mathbf{x}}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Jacobian Matrix

- It is the orientation of the tangent plane to the vector-valued function at a given point

- Generalizes the gradient of a scalar valued function

Quadratic Forms

- Many functions can be locally approximated with quadratic form

$$
\begin{aligned}
f(\mathbf{x}) & =\sum_{i, j} a_{i j} x_{i} x_{j}+\sum_{i} b_{i} x_{i}+c \\
& =\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b} \mathbf{x}+c
\end{aligned}
$$

- Often, one is interested in finding the minimum (or maximum) of a quadratic form, i.e.,

$$
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x})
$$

Quadratic Forms

- Question: How to efficiently compute a solution to this minimization problem

$$
\hat{\mathrm{x}}=\underset{\mathrm{x}}{\operatorname{argmin}} f(\mathrm{x})
$$

- At the minimum, we have $f^{\prime}(\hat{x})=0$
- By using the definition of matrix product, we can compute f '

$$
\begin{aligned}
f(\mathrm{x}) & =\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b x}+c \\
f^{\prime}(\mathrm{x}) & =\mathbf{A}^{T} \mathbf{x}+\mathbf{A} \mathbf{x}+\mathbf{b}
\end{aligned}
$$

Quadratic Forms

- The minimum of $f(\mathrm{x})=\mathrm{x}^{T} \mathbf{A x}+\mathrm{bx}+c$ is where its derivative is 0

$$
0=\mathbf{A}^{T} \mathbf{x}+\mathbf{A} \mathbf{x}+\mathbf{b}
$$

- Thus, we can solve the system

$$
\left(\mathbf{A}^{T}+\mathbf{A}\right) \mathbf{x}=-\mathbf{b}
$$

- If the matrix is symmetric, the system becomes

$$
2 A x=-b
$$

- Solving that, leads to the minimum

Further Reading

- A "quick and dirty" guide to matrices is the Matrix Cookbook available at: http://matrixcookbook.com

