Advanced Techniques
for Mobile Robotics

Robot Software
Architectures

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

UNI

FREIBURG

How to Program a Robot

= Robots are rather complex systems

= Often, a large set of individual capabilities
is needed

= Flexible composition of different
capabilities for different tasks

In this lecture, we discuss:

= What are important aspects of a robot
architecture?

= What are good design decisions?

Discussion

= What do you think is important?

= Consider you want to build your own robot
control software. What are relevant design
decisions for that software?

Requirements
from a Academic Perspective

= Support for multiple components
= Communication between components
= Easy way to write own components

= Possibility to replace individual
components

= Easy to extend
= Means for data logging and debugging
= Support for decentralized components

Desired Features
from a Academic Perspective

= Robustness

" Hardware abstractions

= Open access (ideal case: open source)
= Hardware/OS independent

= Means for time stamping

= Means for visualization

Example

user interface

{

path planning

collision

!

avoidance localization

base interface sensor interface(s)
{ I
base driver sensor driver(s)
{ \

hardware

Communication Examples

= Message-based systems

A B

msg

var X
vary

®= Direct (shared) memory access

memory

A\> varx vary <

Forms of Communication

= Push
O :)u|
= Publish/Subscribe

= Publish to blackboard

Push

= One-way communication

= Send as the information is generated by
the producer P

P data) C

Pull

= Data is delivered upon request by the
consumer C

= Useful if the consumer C controls the
process and the data is not required at
high frequency

data request
P m[e

data

Publish/Subscribe

" The consumer C requests a subscription
for the data by the producer P

" The producer P sends the subscribed data
as it is generated to C

= Data generated according to a trigger
(e.g., sensor data, pose corrections, ...)

subscription request
Pl S— C
4>
data (t=1)
data (t=2) -

data (...)

Publish to Blackboard

= The producer P send data to a blackboard

= A consumer C pulls data from the
blackboard B

= Only the last instance of the data is stored
in the blackboard B

" New data from P overrides previously sent
data

— data request
P B C

Example: Laser Range Sensor

= Driver for the LRF reads the data from the
hardware device (serial, USB, ...)

= | RF driver offers a subscription to the topic
“laser data”

" The localization module subscribes to the
topic “laser data”

" The LRF driver will send every new laser
range information to the localization
module

Communication Infrastructure

= A communication infrastructure/robotic
middleware is needed that provides such
forms of communication

= There exists a large set of such
infrastructures (not only for robotics)

Examples (used in robotics)

= JPC by Reid Simmons (used in Carmen)
= MOQOSDB by Paul Newman

= ROS-Master by Willow Garage

IPC, MOOS, ROS, and Friends

= Are created for easy data exchange

= Communication within and among
processes ("programs”)

= Transparent network support
= Designed for “friendly environments”

ROS Master

[ROS Master}

/advertises

ROS Master

[ROS Master}

\ subscribes

P C

ROS Master

[ROS Master}

data

IPC Central & MOOSDB

CENTRAL / MOOSDB |

/’Isg definition

IPC Central & MOOSDB

CENTRAL / MOOSDB |

\ subscribes

P C

IPC Central & MOOSDB

CENTRAL / MOOSDB |

/=

P C

Messages Through the Central

= Discuss: pros and cons

Messages Through the Central

Pro

= Better control over message flow

= Transparent logging (time-stamping)
= No dead processes

= Centralized “health monitoring”

Con
= Slower/bigger delays

= Higher network traffic in decentralized
systems

Example

user interface
{
path planning

collision }zation

base interface sensor interface(s)
{ 1
base driver sensor driver(s)
{ \

hardware

middleware

Other Differences

= Need to share header files

= Typed vs. non-typed messages

= Binary data vs. human readable strings
= Platform/OS independence

= Time synchronization

Messages for Communication

= Each module provides a list of messages it
sends (e.g., via publish) or wants to
receive (via pull)

= This list of messages is the only way of
communication (black box)

= Example:

Carmen

Robot Navigation Toolkit

Message Example in Carmen

A message definition:

typedef struct {
double x, y, theta;
double tv, rv;
double acceleration;
double timestamp;
char *host;
} carmen_ base odometry message;

A helper function to subscribe the message:

void

carmen_base_subscribe odometry message (
carmen_base_ odometry message *odometry,
carmen_handler_t handler,
carmen_subscribe t subscribe how);

Message Example in Carmen

typedef struct {
double x, y, theta;
double tv, rv;
double acceleration;
double timestamp;
char *host;
} carmen base odometry message;

= Every message contains a timestamp and
the name of the sending host

Message Example in Carmen

= Often, modules provide helper function
that encapsulate sending messages

= For example, calling

void carmen robot velocity command (
double tv, double rv);

= Sends the message

typedef struct {
double tv, rv;
double timestamp;
char *host;
} carmen robot velocity message;

Modules

= Most systems use the modules (or nodes)

= Often, each module represents one task
(localization, path planning, a driver, ...)

= Each module runs as an own process

= Discuss: why is this done like that?

Modules

= Most systems use the modules (or nodes)

= Often, each module represents one task
(localization, path planning, a driver, ...)

= Eac
= MOC

N module runs as an own process
ules can be replaced easily

= ModC

ules can be distributed between

machines

= If a

module dies, this does not affect the

other components (at least they can react)

= Sep

aration between module and its GUI

= Discuss: why separating the GUI?

Separation of the User Interface

It is a good advice to separate a
component/module from is GUI

GUIs can run remotely

GUIs may require significant resources
(on the robot, that can be critical)

Often OpenGL GUIs for 3D visualizations
will not run on the robot (graphics card)

...but often less nice to code...

Parameters

= “"There should be only a single parameter
file. No exceptions.”

= Parameters should be handled centrally

= Modules should only be allowed to read
and write parameters via a centralized
mechanism

Parameters in Carmen

= There is only on ini file
= It is read by one process (param_daemon)
= Modules can query and set parameters

= Modules get notified if a parameter has
changed online

= Examples:

int carmen_param get int(char *variable, int *return_ value);
int carmen_param get double(char *variable, double *return_value);

Example

user interface
{
path planning

collision }zation

base interface sensor interface(s)
{ 1
base driver sensor driver(s)
{ \

hardware

parameter server

middleware

Logging Data

= Discuss: why logging data?

Logging Data...

= for post-processing
= for documenting experiments

= for being independent from a robot
running 24/7

= for debugging and reproducing failures
= for collecting training data

Logging Data

= Good systems provide an easy way to log
data

= Time-stamped data

= Transparent logging and playback
(no distinction between played back data
and real robot generating data online)

= Jdeal case: everything can be logged
transparently

Log Formats

* Human readable formats vs. self-made
binary formats

= Discuss: pros and cons!

Log Formats

= MOOS: Human readable formats, logs
everything (String-based messages)

= Carmen (IPC): Human readable formats,
newly defined message required changes
in the logger/playback component

= ROS: binary format, can log transparently,
logfile compatibility between versions

Logfile Example

0 © @ stachnis@ubuntu: ~/code/carmen/carmen/bin

File Edit View Terminal Help

PARAM logger bumper on 1320184720.810322 ubuntu 1320184720.810321
PARAM logger imu on 1320184720.810327 ubuntu 1320184720.810326
PARAM logger motioncmds off 1320184720.810332 ubuntu 1320184720.810331
ODOM 0.000000 0.000000 0.000000 ©.000000 0.000000 ©.500000 1320184720.860688 ubuntu 0.050737
RAWLASER1 3 -1.570796 3.141593 0.017453 81.000000 0.001000 © 181 1.653 1.652 1.652 1.650 1.756
1.751 1.655 1.658 1.760 1.664 1.669 1.771 1.716 1.681 1.790 1.773 1.7600 1.708 1.811 1.727 1.734
1.842 1.754 1.765 1.870 1.793 1.802 1.894 1.831 1.848 1.920 1.881 2.002 1.945 1.940 2.022 1.98
2 2.096 2.043 2.165 2.115 2.230 2.182 3.523 3.453 3.534 4.210 3.976 3.909 3.853 3.782 3.723 3.6
69 2.838 2.799 2.762 2.850 2.814 2.780 2.865 2.953 3.038 3.123 3.208 3.287 3.374 3.469 3.648 3.
731 3.917 4.105 4.290 4.478 4.448 4.548 5.236 5.519 5.906 6.140 7.089 7.089 7.239 7.417 7.497 7
.474 7.457 7.339 7.591 10.224 8.207 10.405 8.793 9.892 7.290 7.293 7.297 7.303 7.381 5.987 5.22
0 4.425 4.234 4.042 4.054 3.863 3.777 3.789 3.806 2.891 2.698 2.606 2.410 2.319 2.226 2.133 2.0
42 1.947 1.850 1.760 1.771 1.673 1.689 1.591 1.490 1.508 1.409 1.421 1.436 1.330 1.348 1.242 1.
258 1.275 1.165 1.180 1.200 1.217 1.099 1.120 1.138 1.020 1.031 1.052 1.071 1.097 1.122 1.146 1
.173 1.637 1.655 1.080 1.114 1.144 1.180 1.200 1.254 1.289 1.343 1.379 1.446 1.465 1.563 1.640
1.715 1.744 1.840 1.934 2.445 2.639 2.731 4.363 4.653 4.738 4.722 4.912 4.857 4.787 5.682 5.571
5.563 6.258 0 1320184720.860688 ubuntu ©.050889

Units & Coordinate Frames

= All modules should use the same units
= SI units (meter, kilogram, second, ...)

= All modules should use the same
coordinate frame

= ... here the problems start in practice
= Different communities use different frames

= Especially in 3D, there are representations
with different properties

Units & Coordinate Frames

= Using different units and/or different
coordinate frames is one serious sources

of errors

Example: Mars Climate Orbiter, 1999

= One company used English units and the
other used SI for controlling the thrusters

= This lead to a wrongly calculated orbit
altitude and finally the orbiter entered the
atmosphere and burned

Most Commonly Used in 2D

o 0

>

X

0 = 0 looks along the x-axis

Simulations

= Simulations are always incomplete

= Simulations will never replace real world
experiments

= Discuss: Why are simulations useful?

Simulations are Useful

= Possibi
= Contro
= Contro

ity to get ground truth
the amount of noise
over the time dimension

= Test of the communication flow

= Test software with the risk of ruining
expensive hardware

= Useful for debugging
= No hardware/robot required

Summary - Important Issues

= Flexible communication architecture
= Message-based communication
= Network transparency

= Easy to use and transparent logging and
playback capabilities

= Centralized parameter handling

= Abstracts higher level components from
the actual hardware (robot/sensors)

= ST units and one reference frame

Part II: Carmen

Carmen

Robot Navigation Toolkit

...In action

More Details on Carmen

® 00 CARMEN

| _11_5,, + @ http://carmen.sourceforge.net/home.html ¢ [[Q~ Google

armen

Robot Navigation Toolkit

* Home
* What's Carmen?
* Core Functionalities

o What's New?

* Repository
¢ Chief Changes

* Download & Installation
* Required Hardware

¢ Running Carmen

+ Configuring Carmen

+ Carmen Onlne Doce Robot Navigation Toolkit

* Program with Carmen
« FAQ
* Papers

* Mailing List
* People

« Data Sets (Radish)

Copyright © by the CARMEN-Team

http://carmen.sourceforge.net

Install Carmen

= Download carmen from
http://carmen.sourceforge.net

= tar xzf carmen.tgz ~/

= export CARMEN_HOME=~/carmen
= cd $CARMEN_HOME/src

= /configure

= make

Running Carmen

= cd $CARMEN_HOME/bin

= ,/central

= /param_daemon -r p2d8+ ../data/freiburg.map
= . /simulator

= . /robot

= ./localize

= ./navigator

= ./navigator_panel
(click place robot to initialize the simulator and
the localization)

= . /robotgui

