
Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Robot Software
Architectures

Advanced Techniques
for Mobile Robotics

How to Program a Robot

§  Robots are rather complex systems
§  Often, a large set of individual capabilities

is needed
§  Flexible composition of different

capabilities for different tasks

In this lecture, we discuss:
§  What are important aspects of a robot

architecture?
§  What are good design decisions?

Discussion

§  What do you think is important?

§  Consider you want to build your own robot
control software. What are relevant design
decisions for that software?

Requirements
from a Academic Perspective
§  Support for multiple components
§  Communication between components
§  Easy way to write own components
§  Possibility to replace individual

components
§  Easy to extend
§  Means for data logging and debugging
§  Support for decentralized components

Desired Features
from a Academic Perspective
§  Robustness
§  Hardware abstractions
§  Open access (ideal case: open source)
§  Hardware/OS independent
§  Means for time stamping
§  Means for visualization
§  …

Example

base interface sensor interface(s)

base driver sensor driver(s)

hardware

collision
avoidance localization

path planning

user interface

§  Message-based systems

§  Direct (shared) memory access

Communication Examples

A B

A B
memory

var x
var y

msg
var x
var y

Forms of Communication

§  Push
§  Pull
§  Publish/Subscribe
§  Publish to blackboard

Push

§  One-way communication
§  Send as the information is generated by

the producer P

P C data

Pull

§  Data is delivered upon request by the
consumer C

§  Useful if the consumer C controls the
process and the data is not required at
high frequency

P C
data request

data

Publish/Subscribe

§  The consumer C requests a subscription
for the data by the producer P

§  The producer P sends the subscribed data
as it is generated to C

§  Data generated according to a trigger
(e.g., sensor data, pose corrections, …)

P C
subscription request

data (t=1)

data (t=2)

data (…)

Publish to Blackboard

§  The producer P send data to a blackboard
§  A consumer C pulls data from the

blackboard B
§  Only the last instance of the data is stored

in the blackboard B
§  New data from P overrides previously sent

data

C
data request

data
P B

data

Example: Laser Range Sensor

§  Driver for the LRF reads the data from the
hardware device (serial, USB, …)

§  LRF driver offers a subscription to the topic
“laser data”

§  The localization module subscribes to the
topic “laser data”

§  The LRF driver will send every new laser
range information to the localization
module

Communication Infrastructure

§  A communication infrastructure/robotic
middleware is needed that provides such
forms of communication

§  There exists a large set of such
infrastructures (not only for robotics)

Examples (used in robotics)
§  IPC by Reid Simmons (used in Carmen)
§  MOOSDB by Paul Newman
§  ROS-Master by Willow Garage
§  …

IPC, MOOS, ROS, and Friends

§  Are created for easy data exchange
§  Communication within and among

processes (“programs”)
§  Transparent network support
§  Designed for “friendly environments”

ROS Master

ROS Master

P C

advertises

ROS Master

ROS Master

P C

subscribes

ROS Master

ROS Master

P C
data

IPC Central & MOOSDB

CENTRAL / MOOSDB

P C

Msg definition

IPC Central & MOOSDB

CENTRAL / MOOSDB

P C

subscribes

IPC Central & MOOSDB

CENTRAL / MOOSDB

P C

data

Messages Through the Central

§  Discuss: pros and cons

Messages Through the Central

Pro
§  Better control over message flow
§  Transparent logging (time-stamping)
§  No dead processes
§  Centralized “health monitoring”

Con
§  Slower/bigger delays
§  Higher network traffic in decentralized

systems

Example

base interface sensor interface(s)

base driver sensor driver(s)

hardware

collision
avoidance localization

path planning

user interface

m
id

dl
ew

ar
e

Other Differences

§  Need to share header files
§  Typed vs. non-typed messages
§  Binary data vs. human readable strings
§  Platform/OS independence
§  Time synchronization
§  …

Messages for Communication

§  Each module provides a list of messages it
sends (e.g., via publish) or wants to
receive (via pull)

§  This list of messages is the only way of
communication (black box)

§  Example:

Message Example in Carmen

typedef struct {!
 double x, y, theta;!
 double tv, rv;!
 double acceleration;!
 double timestamp;!
 char *host;!
} carmen_base_odometry_message;!

void !
carmen_base_subscribe_odometry_message( 

!carmen_base_odometry_message *odometry,  
!carmen_handler_t handler,  
!carmen_subscribe_t subscribe_how);!
!!

A message definition:

A helper function to subscribe the message:

Message Example in Carmen
typedef struct {!
 double x, y, theta;!
 double tv, rv;!
 double acceleration;!
 double timestamp;!
 char *host;!
} carmen_base_odometry_message;!

§  Every message contains a timestamp and
the name of the sending host

Message Example in Carmen

§  Often, modules provide helper function
that encapsulate sending messages

§  For example, calling

§  Sends the message

void carmen_robot_velocity_command(!
! ! !double tv, double rv);!

typedef struct {!
 double tv, rv;!
 double timestamp;!
 char *host;!
} carmen_robot_velocity_message;!
!

Modules

§  Most systems use the modules (or nodes)
§  Often, each module represents one task

(localization, path planning, a driver, …)
§  Each module runs as an own process

§  Discuss: why is this done like that?

Modules

§  Most systems use the modules (or nodes)
§  Often, each module represents one task

(localization, path planning, a driver, …)
§  Each module runs as an own process
§  Modules can be replaced easily
§  Modules can be distributed between

machines
§  If a module dies, this does not affect the

other components (at least they can react)
§  Separation between module and its GUI
§  Discuss: why separating the GUI?

Separation of the User Interface

§  It is a good advice to separate a
component/module from is GUI

§  GUIs can run remotely
§  GUIs may require significant resources

(on the robot, that can be critical)
§  Often OpenGL GUIs for 3D visualizations

will not run on the robot (graphics card)

§  …but often less nice to code…

Parameters

§  “There should be only a single parameter
file. No exceptions.”

§  Parameters should be handled centrally
§  Modules should only be allowed to read

and write parameters via a centralized
mechanism

Parameters in Carmen

§  There is only on ini file
§  It is read by one process (param_daemon)
§  Modules can query and set parameters
§  Modules get notified if a parameter has

changed online

§  Examples:

int carmen_param_get_int(char *variable, int *return_value);!
int carmen_param_get_double(char *variable, double *return_value);!

Example

base interface sensor interface(s)

base driver sensor driver(s)

hardware

collision
avoidance localization

path planning

user interface

m
id

dl
ew

ar
e

pa
ra

m
et

er
 s

er
ve

r

Logging Data

§  Discuss: why logging data?

Logging Data…

§  for post-processing
§  for documenting experiments
§  for being independent from a robot

running 24/7
§  for debugging and reproducing failures
§  for collecting training data
§  …

Logging Data

§  Good systems provide an easy way to log
data

§  Time-stamped data
§  Transparent logging and playback

(no distinction between played back data
and real robot generating data online)

§  Ideal case: everything can be logged
transparently

Log Formats

§  Human readable formats vs. self-made
binary formats

§  Discuss: pros and cons!

Log Formats

§  MOOS: Human readable formats, logs
everything (String-based messages)

§  Carmen (IPC): Human readable formats,
newly defined message required changes
in the logger/playback component

§  ROS: binary format, can log transparently,
logfile compatibility between versions

Logfile Example

Units & Coordinate Frames

§  All modules should use the same units
§  SI units (meter, kilogram, second, …)

§  All modules should use the same
coordinate frame

§  … here the problems start in practice
§  Different communities use different frames
§  Especially in 3D, there are representations

with different properties

Units & Coordinate Frames

§  Using different units and/or different
coordinate frames is one serious sources
of errors

Example: Mars Climate Orbiter, 1999
§  One company used English units and the

other used SI for controlling the thrusters
§  This lead to a wrongly calculated orbit

altitude and finally the orbiter entered the
atmosphere and burned

Most Commonly Used in 2D

looks along the x-axis

Simulations

§  Simulations are always incomplete
§  Simulations will never replace real world

experiments

§  Discuss: Why are simulations useful?

Simulations are Useful

§  Possibility to get ground truth
§  Control the amount of noise
§  Control over the time dimension
§  Test of the communication flow
§  Test software with the risk of ruining

expensive hardware
§  Useful for debugging
§  No hardware/robot required
§  …

Summary – Important Issues

§  Flexible communication architecture
§  Message-based communication
§  Network transparency
§  Easy to use and transparent logging and

playback capabilities
§  Centralized parameter handling
§  Abstracts higher level components from

the actual hardware (robot/sensors)
§  SI units and one reference frame

Part II: Carmen

…in action

More Details on Carmen

http://carmen.sourceforge.net

Install Carmen

§  Download carmen from
http://carmen.sourceforge.net

§  tar xzf carmen.tgz ~/
§  export CARMEN_HOME=~/carmen
§  cd $CARMEN_HOME/src
§  ./configure
§  make

Running Carmen
§  cd $CARMEN_HOME/bin
§  ./central
§  ./param_daemon –r p2d8+ ../data/freiburg.map
§  ./simulator
§  ./robot
§  ./localize
§  ./navigator
§  ./navigator_panel

(click place robot to initialize the simulator and
the localization)

§  ./robotgui

