
Wolfram Burgard, Cyrill Stachniss, 

Kai Arras, Maren Bennewitz 

ROS 

Advanced Techniques  
for Mobile Robotics  



Today’s Lecture 

§  ROS – Robot Operating System 
§  PR2 – Humanoid Robot 
§  TF – Transforms 
§  PCL – Point Clouds 
§  ROS Applications 



ROS Overview Talk 

§  High Level Overview 
§  What is ROS? 
§  Who made it? 
§  Why do we use it? 

§  Middleware Aspects 
§  Software Structure 
§  Client Libraries 



Hardware 

Ubuntu 

App 

High Level Overview 

What is ROS? 
§  An Operating System like Windows, GNU/Linux? 
§  A Software Distribution? 
§  A Middleware? 
§  A Set of Libraries? 

ROS 

App 

App 

App App 

IPC 



High Level Overview 
Who made ROS? 

 
 
 
 
 
§  Privatly Owned Company 
§  Based in Menlo Park, California 
§  Hardware: PR2, Texai 
§  Software: ROS (OpenCV, Player, PCL) 
§  Strong Open Source Commitment 



High Level Overview 

Why do we use ROS? 
§  Great functionality 

§  Middleware (this session) 
§  Development tools (2nd Session) 
§  Advanced libraries (3rd Session) 
§  Hardware drivers 

§  Large scientific community 
§  A lot of state-of-the-art software available 
§  Easy to exchange/integrate/build-upon existing projects 
§  Open source (mostly BSD) 
§  Actively developed by full-time staff 

§  To stop reinventing the wheel... 





Robots Using ROS 



ROS - a Middleware for Robots 

“Middleware is a software that connects 
software components or applications.” 

§  Framework for interprocess communication 
§  Boosts modularization 
§  Enables transparent distribution of 

software in a network 



ROS - a Middleware for Robots 

Example: Communication on the Internet 

Web 
Browser Web Server 

HTTP Request 

HTTP Reply 

DNS Server 

HTML 

DNS Request 

DNS Reply (Host IP) 

DNS Information 



ROS - a Middleware for Robots 

Interprocess Communication Using ROS 

Viewer Node Hokuyo 
Node 

Topic Request 

ROS Master 

Host+Port 

Advertise Topic 

Topic Stream 

Subscribe Topic 

LaserScan 



ROS - a Middleware for Robots 

Interprocess Communication Using ROS 

Viewer Node Hokuyo 
Node 

ROS Master 
Advertise Data 

ROS Parameter 
Server 

C
onfiguration 

Configuration 

Logging 
Node 

Data 

Data Location 



ROS - a Middleware for Robots 



ROS - a Middleware for Robots 



ROS - a Middleware for Robots 
There is more to it... 

§  (De-)Serialization under the hood 
§  Central multi-level logging facilities 
§  Service calls, preemptible actions 
§  Central time 
§  Dynamic reconfiguration 



ROS Overview 

§  High Level Overview 
§  What is ROS? 
§  Who made it? 
§  Why do we use it? 

§  Middleware Aspects 
§  Software Structure 
§  Client Libraries 



ROS – Software Distribution 

Software Hierarchy 
§  Release – collection of stacks and packages 
§  Stacks – a full application suite 
§  Package – software (and interface 

definition) to solve a specific task 
§  Node – An executable with some useful 

functionality 
§  Message/Service/Action – Interface 

definitions 



ROS – Software Distribution 

Boxturtle 
March 2010 

C-Turtle 
August 2010 

Diamondback 
March 2011 

Releases 

Electric Emys 
November 2011 



ROS – Software Distribution 

~500 ~3150 ~270 



ROS – Software Distribution 

§  Binary distribution via debian package management 
§  Source distribution via version control systems 
§  Tools for dependency resolution 

§  Fetch binaries from apt-repository 
§  Fetch source code from version control 
§  Recursively build dependencies 

§  Central documentation wiki: ros.org/wiki 

Installation instructions & download mirror: 
http://ros.informatik.uni-freiburg.de 



ROS – Client Libraries 

§  What makes a program a ROS node? 
§  → Usage of a client library 

§  C++ and Python 
§  Octave/Matlab, Lisp, Java and Lua 

(experimental) 
§  You can implement your own 

§  A client library embeds a program in the 
ROS interprocess communication network 
(i.e. attaches it to the middleware) 



ROS – Tool Ecosystem 
There is more to it... 

§  Tools for analysis, debugging 
§  and visualization of IPC 
§  Live message view 
§  Recording and playback 
§  Many more... 



Today’s Lecture 

§  ROS – Robot Operating System 
§  PR2 – Humanoid Robot 
§  TF – Transforms 
§  PCL – Point Clouds 
§  ROS Applications 



Sensors 



Joints 



PC Hardware 
§  2x Onboard servers 

§   Processors : Two Quad-Core i7 Xeon 
§    Memory : 24 GB 

§  Internal hard drive: 500 GB 
§  Removable hard drive:: 1.5 TB 



SA-1 

PR2 Simulation 



PR2 Simulation 
§  Motivation: 

§  Regression testing  
§  Visualization 
§  Design, optimization 
§  Multiple developers, single robot 

§  Based on Open Source project Gazebo 
§  Uses Open Dynamics and Physics Engine 
§  Uses Ogre for rendering 



PR2 Simulation 
§  Requirements: 

§  Graphics card with 3D acceleration (Nvidia, ATI) 
§  Linux supported driver  
§  Core2Duo processor 
§  > 2GB Ram 



Simulation Fidelity 
§  Manipulation: 

§  Simulated real-time PR2 etherCAT node 
communicates actuator states (motor efforts and 
position) 

§  Perception: 
§  Simulated sensor nodes for cameras, lasers and 

imu  
§  Stream data as well as services provided 

§  Self collision checks are disabled 
§  Anti-gravity arms  
§  No laser scan duration 

 



Learning to Set a Table 

§  Observe example scenes of breakfast tables 
§  Learn a hierarchical scene model 

§  Level 1: physical objects (segmented point clouds) 
§  Level 2: covers (constellations of physical objects) 
§  Level 3: table scenes (constellations of covers) 

§  Sample from the model to generate new scenes 



Learning to Clean a Table 
§  Uncertainty about how the dirt looks like 
§  Idea: “Dirt is that what we can remove” 

1.  Cluster image into color 
classes 

2.  Observe table state 
3.  Try wiping each class 
4.  Updating belief about the 

expected 
5.  Clean the entire table  
6.  Observe again 

 



Learning to Clean a Table 



Student Projects 
§  Portrait Bot: 

§  Recognize faces in camera images 
§  Extract edges  
§  Draw edge image onto a whiteboard 
§  Available in May 

§  Two-handed cleaning with a broom: 
§  Objective: adapting coverage plan to using a 

broom (e.g. different poses/pattern for sweeping 
in corners or under a table) 

 



Student Project: Portrait Bot 



Student Project: Sweeping 



Today’s Lecture 

§  ROS – Robot Operating System 
§  PR2 – Humanoid Robot 
§  TF – Transforms 
§  PCL – Point Clouds 
§  ROS Applications 



Motivation 
§  Multiple sensors and actuators on 

robots 
§  Robot and sensors not static 
§  Multi-robot cooperation 
§  Where is this object relative to 

my gripper? Where is my arm 
in the world? 



What is tf? 

A coordinate frame tracking system 
§  Standardized protocol for publishing transform data 

to a distributed system 
§  Helper classes and methods for: 

§  Publishing coordinate frame data: TransformBroadcaster 
§  Collecting transform data and using it to manipulate data: 

Transformer, TransformListener, tf::MessageFilter, ... 
§  Currently: Only tree(s) of transformations, but any 

robot(s) / sensor layout 
§  Conversion functions, mathematical operations on 

3D poses  



tf is Distributed! 
§  Two types of tf nodes: Publishers & 

Listeners 

§  Listeners: Listen to /tf and cache all data 
heard up to cache limit (10 sec default) 

§  Publishers: Publish transforms between 
coordinate frames on /tf 

§  No central source of tf information, or 
history before a node was started 



Debugging Tools 
§  Command Line Tools 

§  tf_echo: Print a specific transform to the screen 
§  tf_monitor: Display statistics about transforms 
§  roswtf: Debug common tf configuration errors 

§  Visualizations 
§  Rviz tf plugin 
§  view_frames 



Coordinate Frames on the PR2 
§  Coordinate frames 

for every link and 
sensor of the robot 

§  Each sensor 
publishes data in 
its own coordinate 
frame 



Common Setup for Mobile Robots 

§  odom -> base_link provided by robot 
odometry 

§  map -> odom provided by localization 
method (e.g. amcl in ROS) 
§  How to transform odom link in map frame so 

that base_link is “correct”? 

map odom base_link camera 

laser 

… 



Sources of Transformations 

§  URDF file defines robot “body layout” 
§  Joints, links, sensor positions, visualization 
 

§  tf for all robot links automatically published  
§  Static transforms published from command 

line 
§  In your own node (e.g. localization) 



Today’s Lecture 

§  ROS – Robot Operating System 
§  PR2 – Humanoid Robot 
§  TF – Transforms 
§  PCL – Point Clouds 
§  ROS Applications 



What are Point Clouds 

§  Point Cloud = a “cloud” (i.e., collection) 
of       points (usually n = 3) 

§    
§  used to represent 3D information about the world 



What are Point Clouds 

§  besides XYZ data, each point    can hold 
additional information 

§  examples include: RGB colors, intensity values, 
distances, segmentation results, etc… 



What are Point Clouds 



What are Point Clouds 



Where do they come from? 
§  Laser scans (high quality) 
§  Stereo cameras (passive & fast  but 

dependent on texture) 
§  Time of flight cameras (fast but not as 

accurate/robust) 
§  Kinect-Style Sensors 
§  Simulation 
§  … 



Tilting Laser Scanner 



Tilting Scanner on Moving Robot 



For what!? 

§  Spatial information of the environment 
has many important applications 
§ Navigation / Obstacle avoidance 
§ Object recognition 
§ Grasping 
§ … 



Obstacle & Terrain Detection 



Object Recognition 
Point Clouds can complement and supersede 
images when they are ambiguous. 
 



What is PCL? 
PCL 
§  is a fully templated modern C++ library for 

3D point cloud processing 
§  uses SSE optimizations (Eigen backend) for 

fast computations on modern CPUs 
§  uses OpenMP and Intel TBB for 

parallelization 
§  passes data between modules (e.g., 

algorithms) using Boost shared pointers 
§  will be made independent from ROS in one 

of the next releases 



PCL Modules 



Data Representation 
§  PointCloud class (templated over the point 

type): 
  template <typename PointT> 
  class PointCloud; 

§  Important members: 
  std::vector<PointT> points; // the data 
  uint32_t width, height; // scan structure? 



Point Types 
§  Examples of PointT: 

struct PointXYZ 
{ 
  float x; 
  float y; 
  float z; 
} 

or 
struct Normal 
{ 
  float normal[3]; 
  float curvature; 
} 
 

See pcl/include/pcl/point_types.h for more examples. 



PointCloud2 Message 
§  We distinguish between two data formats 

for the point clouds: 
§  PointCloud<PointType> with a specific data type 

(for actual usage in the code) 
§  PointCloud2 as a general representation 

containing a header defining the point cloud 
structure (for loading, saving or sending as a 
ROS message) 

Conversion between the two is easy: 
pcl::fromROSMsg and pcl::toROSMsg 
 



Basic Interface 
Filters, Features, Segmentation all use the 
same basic usage interface: 

§ Create the object 
§  use setInputCloud to give the input 
§  set some parameters 
§  call compute to get the output 



Filter Example 1 
pcl::PassThrough<T> p; 
p.setInputCloud (data); 
p.FilterLimits (0.0, 0.5); 
p.SetFilterFieldName ("z"); 
 
 
 
 
 
filter_field_name = "x"; | filter_field_name = "xz"; 



Filter Example 2 
pcl::VoxelGrid<T> p; 
p.setInputCloud (data); 
p.FilterLimits (0.0, 0.5); 
p.SetFilterFieldName ("z"); 
p.setLeafSize (0.01, 0.01, 0.01); 



Filter Example 3 
pcl::StatisticalOutlierRemoval<T> p; 
p.setInputCloud (data); 
p.setMeanK (50); 
p.setStddevMulThresh (1.0); 
 



Features Example 1 
pcl::NormalEstimation<T> p; 
p.setInputCloud (data); 
p.SetRadiusSearch (0.01); 



Features Example 2 
pcl::BoundaryEstimation<T,N> p; 
p.setInputCloud (data); 
p.setInputNormals (normals); 
p.SetRadiusSearch (0.01); 



Features Example 3 
NarfDescriptor narf_descriptor(&range_image); 
narf_descriptor.getParameters().support_size = 0.3; 
narf_descriptor.getParameters().rotation_invariant = false; 
PointCloud<Narf36> narf_descriptors; 
narf_descriptor.compute(narf_descriptors); 



Segmentation Example 1 
pcl::SACSegmentation<T> p; 
p.setInputCloud (data); 
p.setModelType (pcl::SACMODEL_PLANE); 
p.setMethodType (pcl::SAC_RANSAC); 
p.setDistanceThreshold (0.01); 



Segmentation Example 2 
pcl::EuclideanClusterExtraction<T> p; 
p.setInputCloud (data); 
p.setClusterTolerance (0.05); 
p.setMinClusterSize (1); 



Segmentation Example 3 
pcl::SegmentDifferences<T> p; 
p.setInputCloud (source); 
p.setTargetCloud (target); 
p.setDistanceThreshold (0.001); 



Higher level example 
How to extract a table plane and the objects on it? 



More details 
§  See http://www.ros.org/wiki/pcl 
 and http://www.pointclouds.org 

 



Today’s Lecture 

§  ROS – Robot Operating System 
§  PR2 – Humanoid Robot 
§  TF – Transforms 
§  PCL – Point Clouds 
§  ROS Applications 



SLAM on Dense Colored Clouds 
§  Our goal: SLAM systems for RGB-D sensors 

§  3D environment representation 
§  6DOF trajectory estimation 
§  Online Operation 
§  No dependency on further sensors (e.g. 

Odometry, Laser) 

§  New kinect-style sensors provide: 
§  Dense RGB-D data 
§  High framerate (30 Hz) 
§  Low weight (440g) 
§  Low-cost (~100€) 



Approach Overview 



Map Representation 
§  Point clouds are inefficient for applications 

such as collision detection and navigation 
§  We use the OctoMap framework 

§  Octree-based data structure 
§  Recursive subdivision of space into octants 

§  Volumes allocated as needed 

        Smart 3D grid 
 



OctoMap Framework 
Probabilistic Update of Voxels 

 

§  Full 3D model 
§  Probabilistic 
§  Multi-resolution 
§  Memory efficient 

§  Available from octomap.sf.net 



Octomap with Per-Voxel Colors 



Kinematic Models 



Kinematic Models 
 §  Fit and select appropriate models for observed 

motion trajectories of articulated objects 
§  Estimate structure and DOFs of articulated 

objects with n>2 object parts 

1-DOF closed chain 

3-DOF open chain 



Kinematic Models 
§  Marker-less perception: 

 Detect and track articulated objects 
in depth images and learn their 
kinematic models 

 
 

§  Approach:  
§  Segment planes 
§  Fit pose candidates and filter 
§  Learn kinematic models 

 
 





Thank You... 
...for your attention 


