Advanced Techniques
for Mobile Robotics

ROS

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

UNI

FREIBURG



Today’s Lecture

= ROS - Robot Operating System
= PR2 — Humanoid Robot

= TF — Transforms
= PCL - Point Clouds B
= ROS Applications | - =




ROS Overview Talk

= High Level Overview
= What is ROS?
= Who made it?
= Why do we use it?&J

= Middleware Aspects{y
= Software Structure
= Client Libraries

——= CTURTLE



High Level Overview

What is ROS?

= An Operating System like Windows, GNU/Linux?
= A Software Distribution?

= A Middleware? IPC
= A Set of Libraries? v v v

App |, App ~ App

=g

ROS




High Level Overview
Who made ROS?

Willow

Privatly Owned Company

Based in Menlo Park, California
Hardware: PR2, Texai

Software: ROS (OpenCV, Player, PCL)
Strong Open Source Commitment



High Level Overview

Why do we use ROS?

= Great functionality
= Middleware (this session)
= Development tools (2"d Session)
= Advanced libraries (3 Session)
= Hardware drivers
= Large scientific community
A lot of state-of-the-art software available
Easy to exchange/integrate/build-upon existing projects
Open source (mostly BSD)
Actively developed by full-time staff

= To stop reinventing the wheel...




e wesgarch Keeps=
Re-Inventing
the lWheel

publ 1Sh °Ine°ne

.a paper with
a proof-of-
.and they uwrite concept robot- Thls prompts

- ther lab to
code that barely ano A
works but lets try to build on

them publish... this result...

-but they can't

But inevitablya get any details
time runs out... on the software
used to make it

.+..and countless
sleepless nights
are spent .
writing code So- a grandiose previous lab
from scratch. plan is formed members is a mess.
to write a new
software API...

-and all the
code used by







ROS - a Middleware for Robots

“Middleware is a software that connects
software components or applications.”

= Framework for interprocess communication

= Boosts modularization

= Enables transparent distribution of
software in a network



ROS - a Middleware for Robots

Example: Communication on the Internet

DNS Request

>

DNS Server

DNS Information

<€

DNS Reply (Host IP)

HTTP Request

|

4
Web
Browser Web Server
A

HTTP Reply

HTML




ROS - a Middleware for Robots

Interprocess Communication Using ROS

Subscribe Topic

Advertise Topic

ROS Master €«——m

Host+Port

Topic Request

|

Viewer Node
A

Hokuyo
Node

Topic Stream

LaserScan




ROS - a Middleware for Robots

Interprocess Communication Using ROS

ROS Parameter

| Configuration Server
0
S
ROS Master <« =
Advertise Data =
Data Location 2
®)
-
\ 4
: Hokuyo
> Viewer Node € <
Data ‘ Node

Logging
Node




ROS - a Middleware for Robots

Jodom
fbase _scan
femd_vel
/rosstage
/base_pose_gound_truth Mtf_message
/eset_time /fale_localization | /particlecloud
flocalizedpose
/wavefont_player fstate
/mbot_footprint /goal
/qui_laser
finflated_obstacles
/nav_view \ finitialpose
/gui_path
/raw_obstacles
flocal_path
/time

/map_server

/map_metadata @  /osout_agg

/numbers-16944-1236712145.73

/numbers




ROS - a Midd leware for Robots




ROS - a Middleware for Robots

There is more to it...
= (De-)Serialization under the hood
= Central multi-level logging facilities

= Service calls, preemptible actions
= Central time

= Dynamic reconfiguration



ROS Overview

= High Level Overview
= \What is ROS?
= Who made it? |
= Why do we use it’&{l =V
= Middleware Aspects B
= Software Structure

= Client Libraries

== CTURTLEE

B —

o —



ROS - Software Distribution

Software Hierarchy
= Release - collection of stacks and packages
= Stacks - a full application suite

= Package - software (and interface
definition) to solve a specific task

= Node - An executable with some useful
functionality

= Message/Service/Action - Interface
definitions



ROS - Software Distribution

C-Turtle
August 2010

Releases

Boxturtle
March 2010

Electric Emys
November 2011

Diamondback
March 2011




ROS - Software Distribution
:::ROS.org

Documentation

(n

About | Mailing Lists | code.ros.org

Browse Software News

packages

~3150

Name

repositories

~270

~500) =

Packages Description

2dmapping pr2 app

2dnav pr2 app

arm navigation

articulation

art vehicle
asctec drivers

au_automow common

au automow drivers

au automow Ssimulation

bag experimental

billiards

1

A 2D mapping application for the PR2 robot platform.
A 2D navigation application for the PR2 robot platform.
arm_navigation

Kinematic models for articulated objects (cabinet doors
fitting, model selection and visualization.

ART autonomous vehicle support

asctec_drivers

Auburn University Autonomous Lawnmower - Common !
au_automow_drivers

au_automow_simulation

bag_experimental

billiards



ROS - Software Distribution

Binary distribution via debian package management
Source distribution via version control systems
Tools for dependency resolution

= Fetch binaries from apt-repository

= Fetch source code from version control

= Recursively build dependencies

Central documentation wiki: ros.org/wiki

Installation instructions & download mirror:
http://ros.informatik.uni-freiburg.de




ROS - Client Libraries

= What makes a program a ROS node?

= — Usage of a client library

= C++ and Python

= Octave/Matlab, Lisp, Java and Lua
(experimental)

= You can implement your own
= A client library embeds a program in the

ROS interprocess communication network
(i.e. attaches it to the middleware)



ROS - Tool Ecosystem

There is more to it.

= Tools for analysis, debugging

and visualization of IPC
= Live message view

= Recording and playback
= Many more...

— rXconsole =N
Message Severity Node
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim
A Oh no! I hit the wall! (Clamping from [x=11.143110, y=5.555555]) Warn Jturtlesim

D]

Include: Exclude: [] Regex |Clear Messages Pause Setup

w rxbag - full_run_2009-11-06.bag

M) 4 (p) ) n) (=

4.l
Nov 66 2669 11:57:57.23

base_scan

laser_tilt_controller/laser_scanner_signal ]]]]]]]]]]IEI]]]]

narrow_stereo/left/camera_info
narrow_stereo/left/image_raw
narrow_stereo/right/camera_info
narrow_stereo/right/image_raw
prosilica/cam_info

prosilica/image_throttled

tf
tilt_scan .
wide_stereo/left/camera_info

wide_stereo/left/image_raw
wide_stereo/right/camera_info

wide_stereo/right/image_raw

RXPlot —Jo)x
Ele

200+ B@ » =

@

i7:00

[ AR R




Today’s Lecture

= ROS - Robot Operating System
= PR2 - Humanoid Robot

= TF — Transforms
= PCL - Point Clouds B
= ROS Applications | - =




Sensors




Joints

r wrist_roll_joint
r forearm roll joint

r_upper_arm roll_joint

head pan joint

head tilt joint

laser _tilt_joint

r shoulder lift_joint

| shoulder pan joint

|_elbow_flex_joint

|_wrist_flex_joint

|_gripper_joint




PC Hardware

= 2X Onboard servers
= Processors : Two Quad-Core i7 Xeon
= Memory : 24 GB

= Internal hard drive: 500 GB
= Removable hard drive:: 1.5 TB



PR2 Simulation

2w RO

Q o S i
Split Window Track Model

clock
gplane
point_white
pr2

ool

0.45 -1.35 148 0.00 24.20 78.50




PR2 Simulation

= Motivation:
= Regression testing
= Visualization
= Design, optimization
= Multiple developers, single robot

= Based on Open Source project Gazebo
= Uses Open Dynamics and Physics Engine
= Uses Ogre for rendering



PR2 Simulation

= Requirements:
= Graphics card with 3D acceleration (Nvidia, ATI)
= Linux supported driver
= Core2Duo processor
= > 2GB Ram



Simulation Fidelity

Manipulation:

= Simulated real-time PR2 etherCAT node
communicates actuator states (motor efforts and
position)

Perception:

= Simulated sensor nodes for cameras, lasers and
imu

= Stream data as well as services provided

Self collision checks are disabled

Anti-gravity arms

No laser scan duration



Learning to Set a Table

= Observe example scenes of breakfast tables

= Learn a hierarchical scene model
= |Level 1: physical objects (segmented point clouds)

= Level 2: covers (constellations of physical objects)
= |Level 3: table scenes (constellations of covers)

= Sample from the model to generate new scenes

.Alb rt-Ludwic
Universitit Freiby )

TidyUpRobo




Learning to Clean a Table

= Uncertainty about how the dirt looks like
= Idea: "Dirt is that what we can remove”

Albert-Ludwigs-

1 . CI USter |mage |nt0 COIOr -lfniversitét Freiburg

TidyUpRobot

classes
2. Observe table state
3. Try wiping each class

4. Updating belief about the
expected

5. Clean the entire table
6. Observe again




Learning to Clean a Table

Learning to Clean a Table

Jurgen Hess, Jurgen Sturm, Wolfram Burgard

Autonomous Intelligent System Lab,
University of Freiburg, Germany




Student Projects

= Portrait Bot:
= Recognize faces in camera images
= Extract edges
= Draw edge image onto a whiteboard
= Available in May

= Two-handed cleaning with a broom:

= Objective: adapting coverage plan to using a
broom (e.qg. different poses/pattern for sweeping
In corners or under a table)



Student Project: Portrait Bot




Student Project: Sweeping




Today’s Lecture

= ROS - Robot Operating System
= PR2 — Humanoid Robot

= TF - Transforms_
= PCL - Point Clouds B
= ROS Applications | - =




Motivation

= Multiple sensors and actuators on
robots

= Robot and sensors not static
= Multi-robot cooperation

B) Where is this object relative to
my gripper? Where is my arm
in the world?

base laser 20cm
- 10cm 1
base_link —




What is tf?

A coordinate frame tracking system

= Standardized protocol for publishing transform data
to a distributed system

= Helper classes and methods for:

= Publishing coordinate frame data: TransformBroadcaster
= Collecting transform data and using it to manipulate data:
Transformer, TransformListener, tf::MessageFilter, ...
= Currently: Only tree(s) of transformations, but any
robot(s) / sensor layout

= Conversion functions, mathematical operations on
3D poses



tf is Distributed!

= Two types of tf nodes: Publishers &
Listeners

= Listeners: Listen to /tf and cache all data
neard up to cache limit (10 sec default)

= Publishers: Publish transforms between
coordinate frames on /tf

= No central source of tf information, or
history before a node was started



Debugging Tools

= Command Line Tools
= tf _echo: Print a specific transform to the screen
= tf _monitor: Display statistics about transforms
= roswtf: Debug common tf configuration errors

= Visualizations

= Rviz tf plugln T /h'gh-‘*f'_;%%]?fame

"‘ » - / .
- \\%g‘fipaperx_l_f,mger_tlp_frame
-. ) \ p £7Y

= view_frames

Ir fore="w€am frame

»

lbase ‘*F‘ ;k
Lbasp link
L




Coordinate Frames on the PR2

= Coordinate frames
for every link and
sensor of the robot

= Each sensor
publishes data in
its own coordinate
frame




Common Setup for Mobile Robots

= odom -> base_link provided by robot
odometry

= map -> odom provided by localization
method (e.g. amcl/ in ROS)

= How to transform odom link in map frame so
that base_link is “correct”?

laser

map » odom *| base_link » camera




Sources of Transformations

= URDF file defines robot “body layout”
= Joints, links, sensor positions, visualization

= tf for all robot links automatically published

= Static transforms published from command
line

= In your own node (e.g. localization)



Today’s Lecture

= ROS - Robot Operating System
= PR2 — Humanoid Robot

= TF - Transforms _ .
* PCL - Point Cloud$ /@ ‘ y
= ROS Applications g = (B = =




What are Point Clouds

= Point Cloud = a “cloud” (i.e., collection)

of n.D points (usually n = 3)
" P — {':UZayZaZZ} — P = {p17p27°°°7pi7°°°7pn}
= used to represent 3D information about the world



What are Point Clouds

= besides XYZ data, each point p can hold
additional information

= examples include: RGB colors, intensity values,
distances, segmentation results, etc...



What are Point Clouds




What are Point Clouds

I

i'lﬁ

il W{ 471




Where do they come from?

= Laser scans (high quality)

= Stereo cameras (passive & fast but
dependent on texture)

= Time of flight cameras (fast but not as
accurate/robust)

= Kinect-Style Sensors
= Simulation




Tilting Laser Scanner

Current laser beams and resulting point cloud




Tilting Scanner on Moving Robot




For what!?

= Spatial information of the environment
has many important applications

= Navigation / Obstacle avoidance
= Object recognition
= Grasping



Detection

n

Obstacle & Terra




Object Recognition

Point Clouds can complement and supersede
images when they are ambiguous.




What is PCL?
PCL

is a fully templated modern C++ library for
3D point cloud processing

uses SSE optimizations (Eigen backend) for
fast computations on modern CPUs

uses OpenMP and Intel TBB for
parallelization

passes data between modules (e.q.,
algorithms) using Boost shared pointers

will be made independent from ROS in one
of the next releases



PCL Modules

features

registration
A L

segmentation sample_consensus

o)

visualization




Data Representation

= PointCloud class (templated over the point
type):
template <typename PointT>
class PointCloud;

= Important members:

std: :vector<PointT> points; // the data
uint32 t width, height; // scan structure?



Point Types

= Examples of PointT:
struct PointXYZ
{
float x;
float y;
float z;
}

or
struct Normal

{
float normal[3];

float curvature;

See pcl/include/pcl/point_types.h for more examples.



PointCloud2 Message

= We distinguish between two data formats
for the point clouds:

= PointCloud<PointType> with a specific data type
(for actual usage in the code)

= PointCloud2 as a general representation
containing a header defining the point cloud
structure (for loading, saving or sending as a

ROS message)

Conversion between the two is easy:
pcl: : fromROSMsg and pcl: : toROSMsg



Basic Interface

Filters, Features, Segmentation all use the
same basic usage interface:

= Create the object

= USe setInputCloud tO give the input
= set some parameters

= call compute to get the output



Filter Example 1

pcl: :PassThrough<T> p;
p.setInputCloud (data);

p.FilterLimits (0.0,

0.5);

p.SetFilterFieldName ("z");

|

filte:_field;name =

"x"; | filter field name




Filter Example 2

pcl: :VoxelGrid<T> p;
setInputCloud (data);

P

P
P
P

FilterLimits (0.0,
SetFilterFieldName
setLeafSize (0.01,

0.5);
("z"

0.01,

14

0.01);




Filter Example 3

pcl::StatisticalOutlierRemoval<T> p;
p.setInputCloud (data);

p.setMeanK (50) ;
p.setStddevMulThresh (1.0);




Features Example 1

NormalEstimation<T> p;

pcl

°
14

p.setInputCloud (data)

°
14

p.SetRadiusSearch (0.01)




Features Example 2

pcl: :BoundaryEstimation<T , N> p;
p.setInputCloud (data);
p.setInputNormals (normals);
p.SetRadiusSearch (0.01) ;

.

0.778

0.889



Features Example 3

NarfDescriptor narf descriptor (&range image) ;

narf descriptor.getParameters () .support size = 0.3;

narf descriptor.getParameters () .rotation invariant = false;
PointCloud<Narf36> narf descriptors;

narf descriptor.compute (narf descriptors);

Range image descriptor's surface patch

descriptor




Segmentation Example 1

pcl: :SACSegmentation<T> p;
p.setInputCloud (data);
p.setModelType (pcl::SACMODEL PLANE) ;
p.setMethodType (pcl::SAC RANSAC) ;
p.setDistanceThreshold (0.01) ;

T

—
e Ty T~
» hh%mwm‘w Y
. R e S e

ot e——, e i i A = - nak 3 o
o < Lo TR S N b R BT i R R
: ) ottty winule ARIRRE s T AR




Segmentation Example 2

pcl: :EuclideanClusterExtraction<T> p;

p.setInputCloud (data);
p.setClusterTolerance (0.095);
p.setMinClusterSize (1);

L b
R Sk
- "

&
A




Segmentation Example 3

pcl: :SegmentDifferences<T> p;
p.setInputCloud (source) ;
p.setTargetCloud (target):;
p.setDistanceThreshold’(0.001);




Higher level example

How to extract a table plane and the objects on it?

PointCloud2

SACSegmentationFromNormals
planar segmentation

‘ TablePlane

------ .

ExtractPolygonalPrismData
(get all points lying on the table) ObjectClusters
_________________________________ EuclideanClusterExtraction >

(split the points into N object clusters)




More details

= See http://www.ros.org/wiki/pcl
and http://www.pointclouds.org

CAR ROOF

FRONT LEGS /
CHARR

Point Cloud Data

POINT CLOUD LIBRARY




Today’s Lecture

= ROS - Robot Operating System
= PR2 — Humanoid Robot

= TF — Transforms
= PCL - Point Cloud5< B
= ROS Applications | ( L = =




SLAM on Dense Colored Clouds

= Qur goal: SLAM systems for RGB-D sensors
= 3D environment representation

= 6DOF trajectory estimation

= Online Operation

= No dependency on further sensors (e.g.
Odometry, Laser)

= New kinect-style sensors provide:
= Dense RGB-D data
= High framerate (30 Hz)
= Low weight (4409g)
= Low-cost (~100€)




Approach Overview

T

Backend

RGBD Sensor

Depth Images U RGB Images U
Pairwise 6D Pairwise Feature
Transformation Estimation Matching
(RANSAC) (SURF, SIFT,...)

Global Pose Graph
Optimization
(g?0)

Registered
3D Point Clouds

|

Voxelization
(OctoMap)

PU=2]UOl4



Map Representation

= Point clouds are inefficient for applications
such as collision detection and navigation

= We use the OctoMap framework
= Qctree-based data structure

= Recursive subdivision of space into octants
= VVolumes allocated as needed

=» Smart 3D grid <
-




OctoMap Framework

= Full 3D model

= Probabilistic

= Multi-resolution
= Memory efficient

= Available from octomap.sf.net



Octomap with Per-Voxel Colors

Probabilistic 3D mapping using
OctoMap and RGBDSLAM

Kai M. Wurm, Felix Endres
Autonomous Intelligent Systems Lab
University of Freiburg, Germany




Kinematic Models

A Probabilistic Framework for

'&, Learning Kinematic Models of
g Articulated Objects
2o
S&
& Autonomous | i i
AIS B Jirgen Sturm, Cyrill Stachniss,

.............

University of Freiburg, Germany



Kinematic Models

= Fit and select appropriate models for observed
motion trajectories of articulated objects

= Estimate structure and DOFs of articulated
objects with n>2 object parts




Kinematic Models

= Marker-less perception:

Detect and track articulated objects
in depth images and learn their
kinematic models

= Approach:
= Segment planes
* Fit pose candidates and filter
= | earn kinematic models




UNI
]

FREIBURG

AIS s

A Probabilistic Framework for
Learning Kinematic Models of
Articulated Objects

......

Wolfram Burgard

University of Freiburg, Germany



Thank You...

...for your attention




