
Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Odometry Calibration by
Least Squares (in Octave)

Advanced Techniques
for Mobile Robotics

Least Squares Minimization
Repeatedly perform the following steps:
§  Linearize the system around the current guess x and

compute for each measurement

§  Compute the terms for the linear system

§  Solve the system to get a new increment

§  Updating the previous estimate

Odometry Calibration

§  We have a robot which moves in an
environment, gathering the odometry
measurements ui ,affected by a systematic
error.

§  For each ui we have a ground truth u*
i

§  There is a function fi(x) which, given some bias
parameters x, returns a an unbiased odometry
for the reading ui’ as follows

Odometry Calibration (cont.)

§  The state vector is

§  The error function is

§  Its derivative is:

Exercise

§  Write a program to calibrate the odometry
§  We provide an input file obtained from a real

robot.
§  Format of z.dat:

§  Every line is a single odometry measurement

u’x u’y u’t ux uy ut

§  u’ and u are respectively the true and the
measured odometry of the system in relative
coordinates (e.g. motion of the robot between
two consecutive frames).

Exercise (in sequential steps)
§  Load the measurements (into a matrix)
§  Write a function A=v2t(u) that given a transformation expressed as a

vector u=[ux uy ut] returns an homogeneous transformation matrix A.
§  Write a function u=t2v(A) dual of the previous one.
§  Write a function T=compute_odometry_trajectory(U) that computes a

trajectory in the global frame by chaining up the measurements (rows) of
the Nx3 matrix U (to visualize the data). Hint: use the two functions defined
above. Test it on the input data by displaying the trajectories.

§  Define the error function ei(X) for a line of the measurement matrix. Call it
error_function(i,X,Z).

§  Define the Jacobian function for the measurement i (call it jacobian(i,Z).
§  Write a function X=ls_calibrate_odometry(Z) which constructs and solves

the quadratic problem. It should return the calibration parameters X.
§  Write a function Uprime=apply_odometry_correction(X,U) which applies

the correction to all odometries in the Nx3 matrix U. Test the computed
calibration matrix and generate a trajectory.

§  Plot the real, the estimated and the corrected odometry.
§  In the directory you will find an octave script ‘LsOdomCalib’ which you can

use to test your program.

Transformation Functions v2t & t2v
function v=t2v(A)

 v(1:2, 1)=A(1:2,3);
 v(3,1)=atan2(A(2,1),A(1,1));

endfunction

function A=v2t(v)
 c=cos(v(3));
 s=sin(v(3));

 A=
 [c, -s, v(1) ;
 s, c, v(2) ;
 0 0 1];

endfunction

compute_odometry_trajectory

function T=compute_odometry_trajectory(U)
 T=zeros(size(U,1),3);
 P=v2t(zeros(1,3));
 for i=1:size(U,1),
 u=U(i,1:3)';
 P*=v2t(u);
 T(i,1:3)=t2v(P)';
 end

end

Trajectories

ground truth

odometry

Error function

function e=error_function(i,X,Z)
 uprime=Z(i,1:3)';
 u=Z(i,4:6)';
 e=uprime-X*u;

end

Jacobian

function A=jacobian(i,Z)
 u=Z(i,4:6);
 A=zeros(3,9);
 A(1,1:3)=-u;
 A(2,4:6)=-u;
 A(3,7:9)=-u;

end

Quadratic Solver
function X=ls_calibrate_odometry(Z)

 #accumulator variables for the linear system
 H=zeros(9,9);
 b=zeros(9,1);
 #initial solution (can be anything, se set it to the identity transformation)
 X=eye(3);

 #loop through the measurements and update the accumulators
 for i=1:size(Z,1),
 e=error_function(i,X,Z);
 A=jacobian(i,Z);
 H=H+A'*A;
 b=b+A'*e;
 end
 #solve the linear system
 deltaX=-H\b;
 #this reshapes the 9x1 increment vector in a 3x3 atrix
 dX=reshape(deltaX,3,3)';
 #computes the cumulative solution
 X=X+dX;

end

applyOdometryCorrection

function C=applyOdometryCorrection(bias, U)
 C=zeros(size(U,1),3);
 for i=1:size(U,1),
 u=U(i,1:3)';
 uc=bias*u;
 C(i,:)=uc';
 end

endfunction

Plots

ground truth

odometry

calibrated

Questions

§  Which one of the wheels of the robot was
deflated (right or left)?

§  Do you feel confident to apply least squares
to more complex problems?

 For next week you should have
understood the basic concepts of
least squares minimization.

