Advanced Techniques for Mobile Robotics

Odometry Calibration by Least Squares (in Octave)

Wolfram Burgard, Cyrill Stachniss,
Kai Arras, Maren Bennewitz

Least Squares Minimization

Repeatedly perform the following steps:

- Linearize the system around the current guess \boldsymbol{x} and compute for each measurement

$$
\mathbf{e}_{i}(\mathbf{x}+\Delta \mathbf{x}) \simeq \mathbf{e}_{i}(\mathbf{x})+\mathbf{J}_{i} \Delta \mathbf{x} \quad \mathbf{J}_{i}=\left.\frac{\partial \mathbf{e}_{i}(\mathrm{x}+\Delta \mathrm{x})}{\partial \Delta \mathrm{x}}\right|_{\Delta \mathrm{x}=0}
$$

- Compute the terms for the linear system

$$
\mathbf{b}^{T}=\sum_{i} \mathbf{e}_{i}^{T} \boldsymbol{\Omega}_{i} \mathbf{J}_{i} \quad \mathbf{H}=\sum_{i} \mathbf{J}_{i}^{T} \boldsymbol{\Omega}_{i} \mathbf{J}_{i} \quad \mathbf{e}_{i}=\mathbf{e}_{i}(\mathbf{x})
$$

- Solve the system to get a new increment

$$
\Delta \mathbf{x}^{*}=-\mathbf{H}^{-1} \mathbf{b}
$$

- Updating the previous estimate

$$
\mathrm{x} \leftarrow \mathrm{x}+\Delta \mathrm{x}^{*}
$$

Odometry Calibration

- We have a robot which moves in an environment, gathering the odometry measurements $\boldsymbol{u}_{\boldsymbol{i}}$, affected by a systematic error.
- For each $\boldsymbol{u}_{\boldsymbol{i}}$ we have a ground truth $\boldsymbol{u}_{\boldsymbol{i}}{ }_{i}$
- There is a function $\boldsymbol{f}_{\boldsymbol{i}}(\boldsymbol{x})$ which, given some bias parameters \boldsymbol{x}, returns a an unbiased odometry for the reading $\boldsymbol{u}_{\boldsymbol{i}}{ }^{\prime}$ as follows

$$
\mathbf{u}_{i}^{\prime}=f_{i}(\mathbf{x})=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mathbf{u}_{i}
$$

Odometry Calibration (cont.)

- The state vector is

$$
\mathbf{x}=\left(\begin{array}{lllllllll}
x_{11} & x_{12} & x_{13} & x_{21} & x_{22} & x_{23} & x_{31} & x_{32} & x_{33}
\end{array}\right)^{T}
$$

- The error function is

$$
\mathbf{e}_{i}(\mathbf{x})=\mathbf{u}_{i}^{*}-\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right) \mathbf{u}_{i}
$$

- Its derivative is:

$$
\mathbf{J}_{i}=\frac{\partial \mathbf{e}_{i}(\mathbf{x})}{\partial \mathbf{x}}=-\left(\begin{array}{ccccccc}
u_{i, x} & u_{i, y} & u_{i, \theta} & & & & \\
& & & u_{i, x} & u_{i, y} & u_{i, \theta} & \\
\\
& & & & & & u_{i, x}
\end{array} u_{i, y} u_{i, \theta}\right)
$$

Exercise

- Write a program to calibrate the odometry
- We provide an input file obtained from a real robot.
- Format of z.dat:
- Every line is a single odometry measurement
$\mathrm{u}_{\mathrm{x}}^{\prime} \mathrm{u}_{\mathrm{y}}^{\prime} \mathrm{u}_{\mathrm{t}}^{\prime} \mathrm{u}_{\mathrm{x}} \mathrm{u}_{\mathrm{y}} \mathrm{u}_{\mathrm{t}}$
- \mathbf{u}^{\prime} and \mathbf{u} are respectively the true and the measured odometry of the system in relative coordinates (e.g. motion of the robot between two consecutive frames).

Exercise (in sequential steps)

- Load the measurements (into a matrix)
- Write a function $\boldsymbol{A}=v 2 t(\underline{\boldsymbol{u}})$ that given a transformation expressed as a vector $\boldsymbol{u}=\left[\boldsymbol{u}_{x} \boldsymbol{u}_{\boldsymbol{y}} \boldsymbol{u}_{\mathrm{t}}\right]$ returns an homogeneous transformation matrix \boldsymbol{A}.
- Write a function $\boldsymbol{u}=t 2 v(\boldsymbol{A})$ dual of the previous one.
- Write a function $\boldsymbol{T}=$ compute_odometry_trajectory(U) that computes a trajectory in the global frame by chaining up the measurements (rows) of the Nx3 matrix U (to visualize the data). Hint: use the two functions defined above. Test it on the input data by displaying the trajectories.
- Define the error function $\mathbf{e}_{\boldsymbol{i}}(\boldsymbol{X})$ for a line of the measurement matrix. Call it error_function $(\mathbf{i}, \boldsymbol{X}, \mathbf{Z})$.
- Define the Jacobian function for the measurement \boldsymbol{i} (call it jacobian(i,Z).
- Write a function $\boldsymbol{X}=/$ s_calibrate_odometry (\boldsymbol{Z}) which constructs and solves the quadratic problem. It should return the calibration parameters \boldsymbol{X}.
- Write a function Uprime=apply_odometry_correction(X,U) which applies the correction to all odometries in the Nx3 matrix U. Test the computed calibration matrix and generate a trajectory.
- Plot the real, the estimated and the corrected odometry.
- In the directory you will find an octave script 'LsOdomCalib' which you can use to test your program.

Transformation Functions v2t \& t2v

function $v=t 2 v(A)$

$$
\begin{aligned}
& v(1: 2,1)=A(1: 2,3) ; \\
& v(3,1)=\operatorname{atan} 2(A(2,1), A(1,1)) ;
\end{aligned}
$$

endfunction
function $A=v 2 t(v)$

$$
\begin{aligned}
& \mathrm{c}=\cos (\mathrm{v}(3)) ; \\
& \mathrm{s}=\sin (\mathrm{v}(3)) ;
\end{aligned}
$$

$$
A=
$$

$$
[c,-s, v(1) ;
$$

$$
s, c, v(2) ;
$$

$$
\left.\begin{array}{llll}
0 & 0 & 1
\end{array}\right]
$$

endfunction

compute_odometry_trajectory

function T=compute_odometry_trajectory(U)
T=zeros(size(U,1),3);

$$
\mathrm{P}=\mathrm{v} 2 \mathrm{t}(\text { zeros }(1,3)) ;
$$

$$
\text { for } \mathrm{i}=1 \text { : size }(\mathrm{U}, 1) \text {, }
$$

u=U(i,1:3)';

$$
\mathrm{P}^{*}=\mathrm{v} 2 \mathrm{t}(\mathrm{u}) ;
$$

$$
\mathrm{T}(\mathrm{i}, 1: 3)=\mathrm{t} 2 \mathrm{v}(\mathrm{P}) \text { '; }
$$

end
end

Trajectories

Error function

function e=error_function($\mathrm{i}, \mathrm{X}, \mathrm{Z}$)
uprime $=Z(i, 1: 3)$ ';
u=Z(i,4:6)';
e=uprime-X*u;
end

Jacobian

function $A=j a c o b i a n(i, Z)$

$$
\begin{aligned}
& u=Z(i, 4: 6) ; \\
& A=z e r o s(3,9) ; \\
& A(1,1: 3)=-u ; \\
& A(2,4: 6)=-u ; \\
& A(3,7: 9)=-u ;
\end{aligned}
$$

end

Quadratic Solver

```
function X=Is_calibrate_odometry(Z)
    #accumulator variables for the linear system
    H=zeros(9,9);
    b=zeros(9,1);
    #initial solution (can be anything, se set it to the identity transformation)
    X=eye(3);
    #loop through the measurements and update the accumulators
    for i=1:size(Z,1),
        e=error_function(i,X,Z);
        A=jacobian(i,Z);
        H=H+A'*A;
        b=b+A'*e;
    end
    #solve the linear system
    deltaX=-H\b;
    #this reshapes the 9x1 increment vector in a 3\times3 atrix
    dX=reshape(deltaX,3,3)';
    #computes the cumulative solution
    X=X+dX;
end
```


applyOdometryCorrection

function C=applyOdometryCorrection(bias, U)
C=zeros(size(U,1),3);
for $i=1: \operatorname{size}(U, 1)$,
u=U(i,1:3)';
uc=bias*u;
$C(i,:)=u c^{\prime} ;$
end
endfunction

Plots

Questions

- Which one of the wheels of the robot was deflated (right or left)?
- Do you feel confident to apply least squares to more complex problems?

For next week you should have understood the basic concepts of least squares minimization.

