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Least Squares Minimization 
Repeatedly perform the following steps: 
§  Linearize the system around the current guess x and 

compute for each measurement 

§  Compute the terms for the linear system 

§  Solve the system to get a new increment 

§  Updating the previous estimate 



Odometry Calibration 

§  We have a robot which moves in an 
environment, gathering the odometry 
measurements ui ,affected by a systematic 
error. 

§  For each ui we have a ground truth u*
i  

§  There is a function fi(x) which, given some bias 
parameters x, returns a an unbiased odometry 
for the reading ui’ as follows 



Odometry Calibration (cont.) 

§  The state vector is 

§  The error function is 

§  Its derivative is: 



Exercise 

§  Write a program to  calibrate the odometry 
§  We provide an input file obtained  from a real 

robot. 
§  Format of z.dat: 

§  Every line is a single odometry measurement 
 
u’x u’y u’t ux uy ut 

§  u’  and u are respectively the true and the 
measured odometry of the system in relative 
coordinates (e.g. motion of the robot between 
two consecutive frames). 



Exercise (in sequential steps) 
§  Load the measurements (into a matrix) 
§  Write a function A=v2t(u) that given a transformation expressed as a 

vector u=[ux uy ut] returns an homogeneous transformation matrix A. 
§  Write a function u=t2v(A) dual of the previous one. 
§  Write a function T=compute_odometry_trajectory(U) that computes a 

trajectory in the global frame by chaining up the measurements (rows) of 
the Nx3 matrix U (to visualize the data). Hint: use the two functions defined 
above. Test it on the input data by displaying the trajectories. 

§  Define the error function ei(X) for a line of the measurement matrix. Call it 
error_function(i,X,Z). 

§  Define the Jacobian function for the measurement i (call it jacobian(i,Z). 
§  Write a function X=ls_calibrate_odometry(Z) which constructs and solves 

the quadratic problem. It should return the calibration parameters X. 
§  Write a function Uprime=apply_odometry_correction(X,U) which applies 

the correction to all odometries in the Nx3 matrix U. Test the computed 
calibration matrix and generate a trajectory. 

§  Plot the real, the estimated and the corrected odometry. 
§  In the directory you will find an octave script ‘LsOdomCalib’ which you can 

use to test your program.  



Transformation Functions v2t & t2v 
function v=t2v(A) 

 v(1:2, 1)=A(1:2,3); 
 v(3,1)=atan2(A(2,1),A(1,1)); 

endfunction 
 
function A=v2t(v) 
   c=cos(v(3)); 
   s=sin(v(3)); 

 A= 
 [c, -s, v(1) ; 
  s,  c, v(2) ; 
  0   0  1  ]; 

endfunction 
 
 
 



compute_odometry_trajectory 

function T=compute_odometry_trajectory(U) 
 T=zeros(size(U,1),3); 
 P=v2t(zeros(1,3)); 
 for i=1:size(U,1), 
  u=U(i,1:3)'; 
  P*=v2t(u); 
  T(i,1:3)=t2v(P)'; 
 end 

end 



Trajectories 

ground truth 

odometry 



Error function 

function e=error_function(i,X,Z) 
 uprime=Z(i,1:3)'; 
 u=Z(i,4:6)'; 
 e=uprime-X*u; 

end 
 



Jacobian 

function A=jacobian(i,Z) 
 u=Z(i,4:6); 
 A=zeros(3,9); 
 A(1,1:3)=-u; 
 A(2,4:6)=-u; 
 A(3,7:9)=-u; 

end 
 



Quadratic Solver 
function X=ls_calibrate_odometry(Z) 

 #accumulator variables for the linear system 
 H=zeros(9,9); 
 b=zeros(9,1); 
 #initial solution (can be anything, se set it to the identity transformation) 
 X=eye(3);  
  
 #loop through the measurements and update the accumulators 
 for i=1:size(Z,1), 
  e=error_function(i,X,Z); 
  A=jacobian(i,Z); 
  H=H+A'*A; 
  b=b+A'*e; 
 end 
 #solve the linear system 
 deltaX=-H\b; 
 #this reshapes the 9x1 increment vector in a 3x3 atrix 
 dX=reshape(deltaX,3,3)'; 
 #computes the cumulative solution 
 X=X+dX; 

end 
 
 



applyOdometryCorrection 

function C=applyOdometryCorrection(bias, U) 
 C=zeros(size(U,1),3); 
 for i=1:size(U,1), 
  u=U(i,1:3)'; 
  uc=bias*u; 
  C(i,:)=uc'; 
 end 

endfunction 



Plots 
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Questions 

§  Which one of the wheels of the robot was 
deflated (right or left)? 

§  Do you feel confident to apply least squares 
to more complex problems? 

 
 For next week you should have 
understood the basic concepts of  
least squares minimization. 

   


