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Robot pose Constraint  

§  Constraints connect the poses of the robot 
while it is moving 

§  Constraints are inherently uncertain 

SLAM 



§  Observing previously seen areas generates 
constraints between non-successive poses 

§  Constraints are inherently uncertain 

 
 

Robot pose Constraint  

SLAM 



Idea of Graph-Based SLAM 
§  Use a graph to represent the problem 
§  Every node in the graph corresponds to a 

pose of the robot during mapping 
§  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

§  Graph-Based SLAM: Build the graph and 
find a node configuration that minimize 
the error introduced by the constraints  



Graph-Based SLAM in a Nutshell 

§  Every node in the 
graph corresponds to 
a robot position and a 
laser measurement 

§  An edge between two 
nodes represents a 
spatial constraint 
between the nodes 
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Graph-Based SLAM in a Nutshell 

§ Once we have the 
graph, we determine 
the most likely map 
by “moving” the 
nodes 

§ … like this 
§ Then, we can render 
a map based on the 
known poses 



The Overall SLAM System 

§  Interleaving process of front-end and back-end 
§  A consistent map helps to determine new 

constraints by reducing the search space 
§  This lecture focuses only on the optimization part 

Graph 
Construction 

(Front-End) 

Graph 
Optimization 

(Back-End) 

raw data 

graph  
(nodes & edges) 

node positions 

today 



The Graph 
§  It consists of n nodes x=x1:n 
§  Each node xi is a 2D or 3D 

transformation (the pose of 
the robot at time ti) 

§  A constraint eij exists between 
the nodes xi and xj if 
§  the robot observed the same 

part of the environment from 
xi and xj and constructs a 
“virtual measurement” about 
the position of xj seen from  
or 

§  an odometry measurement 
connects both poses. 
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Measurement  
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The Graph 

xi 
xj 

The edge represents the position of xj 
seen from xi, based on the 
observations 

§  It consists of n nodes x=x1:n 
§  Each node xi is a 2D or 3D 

transformation (the pose of 
the robot at time ti) 
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xi and xj and constructs a 
“virtual measurement” about 
the position of xj seen from  
or 

§  an odometry measurement 
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The Graph 

xi 
Xi+1 

The edge represents the 
odometry measurement 

§  It consists of n nodes x=x1:n 
§  Each node xi is a 2D or 3D 

transformation (the pose of 
the robot at time ti) 

§  A constraint eij exists between 
the nodes xi and xj if 
§  the robot observed the same 

part of the environment from 
xi and xj and constructs a 
“virtual measurement” about 
the position of xj seen from  
or 

§  an odometry measurement 
connects both poses. 



The Edge Information Matrices 

§  Observations are affected by noise 
§  We use an information matrix Ωij for each edge 

to encode the uncertainty of the edge 
§  The “bigger” Ωij, the more the edge “matters” in 

the optimization procedure 

Questions: 
§  What do the information matrices look like in 

case of scan-matching vs. odometry? 
§  What should these matrices look like in a long,  

featureless corridor? 



Pose Graph 
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Pose Graph 
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error 

edge 

§  Goal: 



SLAM as a Least Squares Problem 

§  The error function looks suitable for least 
squares error minimization 
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SLAM as a Least Squares Problem 

§  The error function looks suitable for least 
squares error minimization 

 
Questions: 
§  What is the state vector? 

 

§  Specify the error function! 

One block for each node 
of the graph 



§  The generic error function of a constraint 
characterized by a mean zij and an information 
matrix Ωij is a vector of the same size as xi 

 
 

§  The error as a function of all the state x: 

§  The error function is 0 when 
 

The Error Function 

xj in the reference of xi measurement 



The Overall Error Minimization 
Procedure  

§  Define the error function 
§  Linearize the error function  
§  Compute its derivative  
§  Set the derivative to zero 
§  Solve the linear system 
§  Iterate this procedure until convergence 



Linearizing the Error Function 

§  We can approximate the error functions 
around an initial guess x via Taylor 
expansion 
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all state variables? 
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Derivative of the Error Function 

§  Does one error function eij(x) depend on 
all state variables? 
§  No, only on xi and xj 

§  Is there any consequence on the structure 
of the Jacobian? 
§  Yes, it will be non-zero only in the rows 

corresponding to xi and xj! 



§  The error function eij of one constraint depends 
only on the two parameter blocks xi and xj 

§  Thus, the Jacobian will be 0 everywhere but in 
the columns of xi and xj. 

 

Jacobians and Sparsity 



Consequences of the Sparsity 

§  To apply least squares, we need to compute 
the coefficient vectors and the coefficient 
matrices: 

 
 

§  The sparse structure of Jij will result in a 
sparse structure of H 

§  This structure reflects the adjacency matrix 
of the graph 



Illustration of the Structure 

Non-zero only at xi and xj 



Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main diagonal 
at xi and xj 



Illustration of the Structure 

Non-zero only at xi and xj 

Non-zero on the main diagonal 
at xi and xj 

... and at the 
blocks ij,ji 



Illustration of the Structure 

+ + … + 

+ + … + 



Consequences of the Sparsity 

§  An edge of the graph contributes to the 
linear system via its coefficient vector bij 
and its coefficient matrix Hij. 

§  The coefficient vector is: 

§  It is non-zero only at the indices 
corresponding to xi and xj 



Consequences of the Sparsity  

§  The coefficient matrix of an edge is: 

§  Is non zero only in the blocks i,j.  



Sparsity Summary 
§  An edge between xi and xj in the graph 

contributes only to the  
§  ith and the jth blocks of the coefficient vector,  
§  blocks ii, jj, ij and ji of the coefficient matrix. 

 
§  The resulting system is sparse and can be 

computed by iteratively “accumulating” the 
contribution of each edge 
 

§  Efficient solvers can be used 
§  Sparse Cholesky decomposition (with COLAMD) 
§  Conjugate Gradients 
§  … many others 



The Linear System 

§  Vector of the states increments: 

§  Coefficient vector: 

§  System Matrix: 

§  The linear system is a block system with n 
blocks, one for each node of the graph. 



§  x is the current linearization point 
§  Initialization 
§  For each constraint: 

§  Compute the error 
Compute the blocks of the Jacobian: 

§  Update the coefficient vector: 

§  Update the system matrix: 

Building the Linear System 



Algorithm 

§  x: the initial guess 
§  While (!converged) 

§  <H,b> = buildLinearSystem(x); 
§  Δx  = solveSparse(H Δx = -b); 
§  x += Δx; 



How to Solve the Linear System? 

§  Linear system 
§  Can be solved by matrix inversion  

(in theory) 
§  In practice: 

§  Cholesky factorization 
§  QR decomposition 
§  Iterative methods such as conjugate gradients 

(for large systems) 
§  In Octave, use the backslash operator 
delta_x = -H\b!



Example on the Blackboard… 



Trivial 1D Example 

§  Two nodes and one observation 

BUT                  ??? 



What Went Wrong? 

§  The constraint only specifies a relative 
constraint between both nodes 

§  Any poses for the nodes would be fine  
as long a their relative coordinates fit 

§  One node needs to be fixed 

constraint 
that sets  
x1=0 



Exercise 

§  Consider a 2D graph where each pose xi  
is parameterized as 

§  Consider the error function 

§  Compute the blocks of the Jacobian J 

§  Hint: write the error function by using 
rotation matrices and translation vectors 



Conclusions 

§  The back-end part of the SLAM problem 
can be effectively solved with least squares 
error minimization 

§  The H matrix is typically sparse 
§  This sparsity allows for efficiently solving 

the linear system 
§  One of the state-of-the-art solutions to 

compute the maximum likelihood estimate 


