Advanced Techniques
for Mobile Robotics

Graph-based SLAM using
Least Squares

Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

UNI

FREIBURG

SLAM

= Constraints connect the poses of the robot
while it is moving

= Constraints are inherently uncertain

P> Robot pose Constraint

SLAM

= Observing previously seen areas generates
constraints between non-successive poses

= Constraints are inherently uncertain

P 3 A
&y
v

=

P> Robot pose Constraint

Idea of Graph-Based SLAM

= Use a graph to represent the problem

= Every node in the graph corresponds to a
pose of the robot during mapping

= Every edge between two nodes
corresponds to a spatial constraint
between them

= Graph-Based SLAM: Build the graph and
find a node configuration that minimize
the error introduced by the constraints

Graph-Based SLAM in a Nutshell

= Every node in the
graph corresponds to
a robot position and a
laser measurement

= An edge between two
nodes represents a
spatial constraint
between the nodes

KUKA Halle 22, courtesy of P. Pfaff

Graph-Based SLAM in a Nutshell

= Every node in the 1
graph corresponds to W e
a robot position and a
laser measurement

= An edge between two
nodes represents a
spatial constraint
between the nodes

KUKA Halle 22, courtesy of P. Pfaff

Graph-Based SLAM in a Nutshell

=Once we have the
graph, we determine
the most likely map
by “moving” the
nodes

Graph-Based SLAM in a Nutshell

=Once we have the
graph, we determine
the most likely map
by “moving” the
nodes

= .. like this

Graph-Based SLAM in a Nutshell

=Once we have the
graph, we determine
the most likely map
by “moving” the
nodes

= .. like this

= Then, we can render
a map based on the
known poses

43\ J I "v . ¥ ‘
TR ol R O e N e - X
PR A.l, e e _V(A | o F
Smm o B) 7 AL
J‘F:‘;_LI {

o e
Ay o e

"Léhﬂ‘..:. W

w B e e
a0 PR ey

i Tl FELIE T FY

lt.s:mn

The Overall SLAM System

node positions
v I

raw data Clreieh Graph
», Construction . Optimization
i graph i
(Front-End) (nodes & edges) (Back-End)

Itoday

= Interleaving process of front-end and back-end

= A consistent map helps to determine new
constraints by reducing the search space

= This lecture focuses only on the optimization part

The Graph

= [t consists of n nodes x=x;,.,

= Each node x; is a 2D or 3D
transformation (the pose of
the robot at time ¢t;)

= A constraint €;j exists between
the nodes x; and x; if

= the robot observed the same
part of the environment from
X; and x; and constructs a
“virtual measurement” about
the position of x; seen from
or

= an odometry measurement
connects both poses.

The Graph

= [t consists of n nodes x=x;,., Measurement from x;
= Each node x; is a 2D or 3D

transformation (the pose of O

the robot at time ¢t;) X
= A constraint e¢; exists between

the nodes x; and x; if

= the robot observed the same
part of the environment from
X; and x; and constructs a
“virtual measurement” about
the position of x; seen from
or

= an odometry measurement
connects both poses.

Measurement
from x;

The Graph

= [t consists of n nodes x=x;,.,

= Each node x; is a 2D or 3D
transformation (the pose of Q/‘
the robot at time t,) x._ %
= A constraint e¢; exists between \
the nodes x; and x; if

= the robot observed the same The edge represents the position of x;
part of the environment from seen from x;, based on the

X; and x; and constructs a observations
“virtual measurement” about

the position of x; seen from

or

= an odometry measurement
connects both poses.

The Graph

= [t consists of n nodes x=x;,.,
= Each node x; is a 2D or 3D

transformation (the pose of O—@
the robot at time ¢t;) X
= A constraint e; exists between \) OF
the nodes x; and x; if
= the robot observed the same The edge represents the
part of the environment from odometry measurement

X; and x; and constructs a
“virtual measurement” about
the position of x; seen from
or

= an odometry measurement
connects both poses.

The Edge Information Matrices

= Observations are affected by noise

= We use an information matrix £;; for each edge
to encode the uncertainty of the edge

= The "bigger” £, the more the edge "matters” in
the optimization procedure

Questions:

= What do the information matrices look like in
case of scan-matching vs. odometry?

= What should these matrices look like in a long,
featureless corridor?

Pose Graph

observation
of x; from x;

(7, ij)

~— edge

e;; (X;,X;)

nodes according
to the graph

error

Pose Graph

observation
of x; from x;

(7, ij)

~— edge

e; ;i (X, X;)

nodes according
to the graph

= Goal:

vJ

X = arg}gnin Ze%ﬂijeij

error

SLAM as a Least Squares Problem

= The error function looks suitable for least
sguares error minimization

. - T
X = arg}r(TnnZeij(Xi,Xj)Qijeqjj(Xiaxj)
1)
argmin » ej. (x) Qe (x)
X
k

SLAM as a Least Squares Problem

= The error function looks suitable for least
sguares error minimization

. - T
X = arg}[;rnnZeij(Xi,Xj)Qijeij(Xian)
1)
argmin » ej. (x) Qe (x)
X
k

Questions:
= What is the state vector?

= Specify the error function!

SLAM as a Least Squares Problem

= The error function looks suitable for least
sguares error minimization

. - T
X = arg}r{TnnZeij(Xi,Xj)Qijeqjj(Xian)
1)
argmin » ej. (x) Qe (x)
X
k

Questions: T —
= What is the state vector? 1 DIOCK 10T 84t NOAe
of the graph
XT — (X{ Xg x%“)

= Specify the error function!

The Error Function

= The generic error function of a constraint
characterized by a mean z;; and an information
matrix £2,; is a vector of the same size as Xx;

e (X, X;)—tQV}Z (X 11X))

measurement | [Xx;in the reference of x;

= The error as a function of all the state x:
e;;(x) = t2v(Z;, 1(X X))

= The error function is 0 when

sz — (Xi—lXj)

The Overall Error Minimization
Procedure

Define the error function

Linearize the error function

Compute its derivative

Set the derivative to zero

Solve the linear system

Iterate this procedure until convergence

Linearizing the Error Function

= We can approximate the error functions
around an initial guess x via Taylor
expansion

e,,;j (X + AX) — e,,;j (X) + JZJAX

] — 8ew(x)
Y ox

Derivative of the Error Function

= Does one error function e;;(x) depend on
all state variables?

Derivative of the Error Function

= Does one error function e;;(x) depend on
all state variables?

= No, only on x; and Xx;

= [s there any consequence on the structure
of the Jacobian?

Derivative of the Error Function

= Does one error function e;;(x) depend on
all state variables?

= No, only on x; and Xx;
= [s there any consequence on the structure
of the Jacobian?

= Yes, it will be non-zero only in the rows
corresponding to x; and x;,

Oe;;(x) 0 oe;j(x;) 0e;;(x;4) 0
- T

Jij = (0"'A7;j"'B7;j"'O)

Jacobians and Sparsity

= The error function e; of one constraint depends
only on the two parameter blocks x; and x;

e;i(x) = e;;(x;,x;)

= Thus, the Jacobian will be 0 everywhere but in
the columns of x; and x;

Consequences of the Sparsity

= To apply least squares, we need to compute
the coefficient vectors and the coefficient
matrices:

b = Y b}, ZeTQ Jij
i

H = Y Hj;= ZJTQJ
—

= The sparse structure of J; will result in a
sparse structure of H

= This structure reflects the adjacency matrix
of the graph

Illustration of the Structure

_ 1T
bz’j — Jijﬂije’ij

_
> = Non-zero only at x; and x;

Illustration of the Structure

l 0
—> Non-zero only at x; and x;

Non-zero on the main diagonal
_ JTQ T at x; and x;

—>

Illustration of the Structure

l 0
—> Non-zero only at x; and x;

Non-zero on the main diagonal
_ JTQ T at x; and x;

... and at the
blocks ij,ji

—>

Illustration of the Structure
b=73 by

]
|+ I++I > I

H =) Hj

i
.+.+...+. |:> .

Consequences of the Sparsity

= An edge of the graph contributes to the
linear system via its coefficient vector b;;
and its coefficient matrix Hj;.

» The coefficient vector is:
_ (O"'e%Qiqujj"'eTQ“B o)

= [t is non-zero only at the indices
corresponding to x; and x;

Consequences of the Sparsity
= The coefficient matrix of an edge is:

Hj; = 359,35

(4
AT
— : Qw< "Aij"'Bij"')
o
\ i)
T T \\
A A AG8By;

= s non zero only in the blocks i,J.

Sparsity Summary

= An edge between x; and x; in the graph
contributes only to the

= jth and the jt" blocks of the coefficient vector,
= blocks i1, jj, ij and ji of the coefficient matrix.

= The resulting system is sparse and can be

computed by iteratively “accumulating” the
contribution of each edge

» Efficient solvers can be used

= Sparse Cholesky decomposition (with COLAMD)
= Conjugate Gradients

= ... many others

The Linear System

= VVector of the states increments:
AxT = (Ax] Axf - AxD)
= Coefficient vector:
b’ = (b] by --- B)
= System Matrix:

/ gl g2 ... gn \
— H21 {H22 ... g2

= The linear system is a block system with n
blocks, one for each node of the graph.

Building the Linear System

= X is the current linearization point
= Initialization b=0 H=0
= For each constraint:
= Compute the error e;; = t2v(ZZ._j1(X;1 X))
Compute the blocks of the Jacobian:
Oe(x;,X;) Oe(x;,X;)
ij = B =
0x; 0%
= Update the coefficient vector:
b] + = e/;Q;;A;; bl + = e/,Q;;B;;

A

= Update the system matrix:
H‘TL—— — BZ;QZJAZJ H]j—— — B;Z;QZJBU

Algorithm

= x: the initial guess

= While ('converged)
» <H,b> = buildLinearSystem(x);
» Ax = solveSparse(H Ax = -b);
" X += AX;

How to Solve the Linear System?

= Linear system HAx = —-b

= Can be solved by matrix inversion
(in theory)

= In practice:
= Cholesky factorization
= QR decomposition

= Jterative methods such as conjugate gradients
(for large systems)

= In Octave, use the backslash operator
delta x = -H\b

Example on the Blackboard...

Trivial 1D Example =)

= Two nodes and one observation

x = (z120)! = (00)

z12 = 1

(Q = 2

e1o 210 — (20 —21)=1—-(0-0) =1
Jio = (1 -1)
bis = eloQ12J12=(2 —2)

2 =2

Hip, = J{29312=(_2 5)

Ax = —HI21b12

BUT det(H) = 0 ?2?7?

What Went Wrong?

= The constraint only specifies a relative

constraint between both nodes

= Any poses for the nodes would be fine
as long a their relative coordinates fit

= One node needs to be fixed

2 D

2 2
—H_lblz
o1t

)+

[

(

-

1 0O
O O

|

~N

J

constraint
that sets
x,;=0

Exercise

Consider a 2D graph where each pose Xx;
is parameterized as

x; = (%; yi 0;)
Consider the error function
e = 12v(Z; (X; - X))
Compute the blocks of the Jacobian J

6e(x,,;, Xj) 8e(xz-, X])
Aij =)¢ Bij = OX ;
L J

Hint: write the error function by using
rotation matrices and translation vectors

1 RE(t; —t;
eij(Xi,X;) = Zijl(Zggj_gz. 0)

Conclusions

= The back-end part of the SLAM problem
can be effectively solved with least squares
error minimization

= The H matrix is typically sparse

= This sparsity allows for efficiently solving
the linear system

= One of the state-of-the-art solutions to
compute the maximum likelihood estimate

