
Wolfram Burgard, Cyrill Stachniss,

Kai Arras, Maren Bennewitz

Graph-based SLAM using
Least Squares

Advanced Techniques
for Mobile Robotics

Robot pose Constraint

§  Constraints connect the poses of the robot
while it is moving

§  Constraints are inherently uncertain

SLAM

§  Observing previously seen areas generates
constraints between non-successive poses

§  Constraints are inherently uncertain

Robot pose Constraint

SLAM

Idea of Graph-Based SLAM
§  Use a graph to represent the problem
§  Every node in the graph corresponds to a

pose of the robot during mapping
§  Every edge between two nodes

corresponds to a spatial constraint
between them

§  Graph-Based SLAM: Build the graph and
find a node configuration that minimize
the error introduced by the constraints

Graph-Based SLAM in a Nutshell

§  Every node in the
graph corresponds to
a robot position and a
laser measurement

§  An edge between two
nodes represents a
spatial constraint
between the nodes

KUKA Halle 22, courtesy of P. Pfaff

Graph-Based SLAM in a Nutshell

KUKA Halle 22, courtesy of P. Pfaff

§  Every node in the
graph corresponds to
a robot position and a
laser measurement

§  An edge between two
nodes represents a
spatial constraint
between the nodes

Graph-Based SLAM in a Nutshell

§ Once we have the
graph, we determine
the most likely map
by “moving” the
nodes

Graph-Based SLAM in a Nutshell

§ Once we have the
graph, we determine
the most likely map
by “moving” the
nodes

§ … like this

Graph-Based SLAM in a Nutshell

§ Once we have the
graph, we determine
the most likely map
by “moving” the
nodes

§ … like this
§ Then, we can render
a map based on the
known poses

The Overall SLAM System

§  Interleaving process of front-end and back-end
§  A consistent map helps to determine new

constraints by reducing the search space
§  This lecture focuses only on the optimization part

Graph
Construction

(Front-End)

Graph
Optimization

(Back-End)

raw data

graph
(nodes & edges)

node positions

today

The Graph
§  It consists of n nodes x=x1:n
§  Each node xi is a 2D or 3D

transformation (the pose of
the robot at time ti)

§  A constraint eij exists between
the nodes xi and xj if
§  the robot observed the same

part of the environment from
xi and xj and constructs a
“virtual measurement” about
the position of xj seen from
or

§  an odometry measurement
connects both poses.

The Graph

xi

Measurement from xi

xj

Measurement
from xJ

§  It consists of n nodes x=x1:n
§  Each node xi is a 2D or 3D

transformation (the pose of
the robot at time ti)

§  A constraint eij exists between
the nodes xi and xj if
§  the robot observed the same

part of the environment from
xi and xj and constructs a
“virtual measurement” about
the position of xj seen from
or

§  an odometry measurement
connects both poses.

The Graph

xi
xj

The edge represents the position of xj
seen from xi, based on the
observations

§  It consists of n nodes x=x1:n
§  Each node xi is a 2D or 3D

transformation (the pose of
the robot at time ti)

§  A constraint eij exists between
the nodes xi and xj if
§  the robot observed the same

part of the environment from
xi and xj and constructs a
“virtual measurement” about
the position of xj seen from
or

§  an odometry measurement
connects both poses.

The Graph

xi
Xi+1

The edge represents the
odometry measurement

§  It consists of n nodes x=x1:n
§  Each node xi is a 2D or 3D

transformation (the pose of
the robot at time ti)

§  A constraint eij exists between
the nodes xi and xj if
§  the robot observed the same

part of the environment from
xi and xj and constructs a
“virtual measurement” about
the position of xj seen from
or

§  an odometry measurement
connects both poses.

The Edge Information Matrices

§  Observations are affected by noise
§  We use an information matrix Ωij for each edge

to encode the uncertainty of the edge
§  The “bigger” Ωij, the more the edge “matters” in

the optimization procedure

Questions:
§  What do the information matrices look like in

case of scan-matching vs. odometry?
§  What should these matrices look like in a long,

featureless corridor?

Pose Graph

nodes according
to the graph

observation
of from

error

edge

Pose Graph

nodes according
to the graph

observation
of from

error

edge

§  Goal:

SLAM as a Least Squares Problem

§  The error function looks suitable for least
squares error minimization

SLAM as a Least Squares Problem

§  The error function looks suitable for least
squares error minimization

Questions:
§  What is the state vector?

§  Specify the error function!

SLAM as a Least Squares Problem

§  The error function looks suitable for least
squares error minimization

Questions:
§  What is the state vector?

§  Specify the error function!

One block for each node
of the graph

§  The generic error function of a constraint
characterized by a mean zij and an information
matrix Ωij is a vector of the same size as xi

§  The error as a function of all the state x:

§  The error function is 0 when

The Error Function

xj in the reference of xi measurement

The Overall Error Minimization
Procedure

§  Define the error function
§  Linearize the error function
§  Compute its derivative
§  Set the derivative to zero
§  Solve the linear system
§  Iterate this procedure until convergence

Linearizing the Error Function

§  We can approximate the error functions
around an initial guess x via Taylor
expansion

Derivative of the Error Function

§  Does one error function eij(x) depend on
all state variables?

Derivative of the Error Function

§  Does one error function eij(x) depend on
all state variables?
§  No, only on xi and xj

§  Is there any consequence on the structure
of the Jacobian?

Derivative of the Error Function

§  Does one error function eij(x) depend on
all state variables?
§  No, only on xi and xj

§  Is there any consequence on the structure
of the Jacobian?
§  Yes, it will be non-zero only in the rows

corresponding to xi and xj!

§  The error function eij of one constraint depends
only on the two parameter blocks xi and xj

§  Thus, the Jacobian will be 0 everywhere but in
the columns of xi and xj.

Jacobians and Sparsity

Consequences of the Sparsity

§  To apply least squares, we need to compute
the coefficient vectors and the coefficient
matrices:

§  The sparse structure of Jij will result in a
sparse structure of H

§  This structure reflects the adjacency matrix
of the graph

Illustration of the Structure

Non-zero only at xi and xj

Illustration of the Structure

Non-zero only at xi and xj

Non-zero on the main diagonal
at xi and xj

Illustration of the Structure

Non-zero only at xi and xj

Non-zero on the main diagonal
at xi and xj

... and at the
blocks ij,ji

Illustration of the Structure

+ + … +

+ + … +

Consequences of the Sparsity

§  An edge of the graph contributes to the
linear system via its coefficient vector bij
and its coefficient matrix Hij.

§  The coefficient vector is:

§  It is non-zero only at the indices
corresponding to xi and xj

Consequences of the Sparsity

§  The coefficient matrix of an edge is:

§  Is non zero only in the blocks i,j.

Sparsity Summary
§  An edge between xi and xj in the graph

contributes only to the
§  ith and the jth blocks of the coefficient vector,
§  blocks ii, jj, ij and ji of the coefficient matrix.

§  The resulting system is sparse and can be

computed by iteratively “accumulating” the
contribution of each edge

§  Efficient solvers can be used
§  Sparse Cholesky decomposition (with COLAMD)
§  Conjugate Gradients
§  … many others

The Linear System

§  Vector of the states increments:

§  Coefficient vector:

§  System Matrix:

§  The linear system is a block system with n
blocks, one for each node of the graph.

§  x is the current linearization point
§  Initialization
§  For each constraint:

§  Compute the error
Compute the blocks of the Jacobian:

§  Update the coefficient vector:

§  Update the system matrix:

Building the Linear System

Algorithm

§  x: the initial guess
§  While (!converged)

§  <H,b> = buildLinearSystem(x);
§  Δx = solveSparse(H Δx = -b);
§  x += Δx;

How to Solve the Linear System?

§  Linear system
§  Can be solved by matrix inversion

(in theory)
§  In practice:

§  Cholesky factorization
§  QR decomposition
§  Iterative methods such as conjugate gradients

(for large systems)
§  In Octave, use the backslash operator
delta_x = -H\b!

Example on the Blackboard…

Trivial 1D Example

§  Two nodes and one observation

BUT ???

What Went Wrong?

§  The constraint only specifies a relative
constraint between both nodes

§  Any poses for the nodes would be fine
as long a their relative coordinates fit

§  One node needs to be fixed

constraint
that sets
x1=0

Exercise

§  Consider a 2D graph where each pose xi
is parameterized as

§  Consider the error function

§  Compute the blocks of the Jacobian J

§  Hint: write the error function by using
rotation matrices and translation vectors

Conclusions

§  The back-end part of the SLAM problem
can be effectively solved with least squares
error minimization

§  The H matrix is typically sparse
§  This sparsity allows for efficiently solving

the linear system
§  One of the state-of-the-art solutions to

compute the maximum likelihood estimate

