Advanced Techniques for Mobile Robotics

TORO – SLAM with Gradient Descent

Wolfram Burgard, Cyrill Stachniss,
Kai Arras, Maren Bennewitz
Graph-based SLAM

- SLAM = simultaneous localization and mapping
- Use a graph to represent the problem
- Every node in the graph corresponds to a pose of the robot during mapping
- Every edge between two nodes corresponds to the spatial constraints between them
- **Goal:** Find a configuration of the nodes that minimize the error introduced by the constraints
Topics Today

- Estimate the Gaussian posterior about the poses of the robot using gradient descent

Two Parts:

- Estimate the means via gradient descent (maximum likelihood map)
- Estimate the covariance matrices via belief propagation and covariance intersection
Problem Formulation

- The problem can be described by a graph

\[\hat{p} = \arg\min \sum_{ij} e_{ij}^T \Omega_{ij} e_{ij} \]

Goal:
- Find the assignment of poses to the nodes of the graph which minimizes the negative log likelihood of the observations:
Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

[First introduced in the SLAM community by Olson et al., ’06]
Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

[First introduced in the SLAM community by Olson et al., ’06]
Stochastic Gradient Descent

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- The magnitude of the correction decreases with each iteration
- Learning rate to achieve convergence

[First introduced in the SLAM community by Olson et al., ’06]
Preconditioned SGD

- Minimize the error individually for each constraint (decomposition of the problem into sub-problems)
- Solve one step of each sub-problem
- Solutions might be contradictory
- A solution is found when an equilibrium is reached
- Update rule for a single constraint:

\[
x^{t+1} = x^t + \lambda \cdot H^{-1} J_i^T \Omega_i r_{ij}
\]

[First introduced in the SLAM community by Olson et al., ’06]
Node Parameterization

- How to represent the nodes in the graph?
- Impact on which parts need to be updated for a single constraint update?
- This are to the “sub-problems” in SGD
- Transform the problem into a different space so that:
 - the structure of the problem is exploited
 - the calculations become fast and easy

\[
x = g(p) \iff p = g^{-1}(x)
\]

\[
x^* = \arg\min_x \sum_{i,j} e'_{ij}(x)^T \Omega_{ij} e'_{ij}(x)
\]

Mapping function

parameters

poses

parameters

transformed problem
Parameterization of Olson

- Incremental parameterization:

\[x_i = p_i - p_{i-1} \]

- Results directly from the trajectory taken by the robot
- Problem: for optimizing a constraint between the nodes \(i \) and \(k \), one needs to update the nodes \(j = i, \ldots, k \) ignoring the topology of the environment
Alternative Parameterization

- Exploit the topology of the space to compute the parameterization
- Idea: “Loops should be one sub-problem”
- Such a parameterization can be extracted from the graph topology itself
Tree Parameterization

- How should such a problem decomposition look like?
Tree Parameterization

- Use a spanning tree!
Tree Parameterization

- Construct a spanning tree from the graph
- The mapping function between the poses and the parameters is:
 \[x_i = p_i \ominus p_{\text{parent}(i)} \quad X_i = P^{-1}_{\text{parent}(i)} P_i \]
- Error of a constraint in the new parameterization

Only variables along the path of a constraint are involved in the update
Stochastic Gradient Descent using the Tree Parameterization

- The tree parameterization leads to several smaller problems which are either:
 - constraints on the tree ("open loop")
 - constraints not in the tree ("a loop closure")
- Each SGD equation independently solves one sub-problem at a time
- The solutions are integrated via the learning rate
Computation of the Update Step

- 3D rotations lead to a nonlinear system
 - Update the poses directly according to the SGD equation may lead to poor convergence
 - This increases with the connectivity of the graph
- Key idea in the SGD update:

\[\Delta x = \lambda \cdot H^{-1} J_{ij}^T \Omega_{ij} r_{ij} \]

Idea: distribute a fraction of the residual along the parameters so that the error of that constraint is reduced
Computation of the Update Step

Alternative update in the “spirit” of the SGD: Smoothly deform the path along the constraints so that the error is reduced.

Distribute the rotational error

Distribute the translational error
Distribution of the Rotational Error

- In 3D, the rotational error cannot be simply added to the parameters because the rotations are not commutative.
- Find a set of **incremental** rotations so that the following equality holds:

\[R_1 R_2 \cdots R_n B = R'_1 R'_2 \cdots R'_n \]
Distributing the Rotational Residual

- Assume that the first node is the reference frame
- We want a correcting rotation with a single axis
- Let A_i be the orientation of the i-th node in the global reference frame

\[A'_n = A_n B = Q A_n \]

with a decomposition of the rotational residual into a chain of incremental rotations obtained by spherical linear interpolation (slerp)

\[Q = Q_1 Q_2 \cdots Q_n \]
\[Q_k = \text{slerp}(Q, u_{k-1})^T \text{slerp}(Q, u_k) \quad u \in [0 \ldots \lambda] \]

- Slerp has been designed for 3d animation: constant speed motion along a circle arc
What is the SLERP?

- SLERP = Spherical LinEar inteRPolation
- Introduced by Ken Shoemake for interpolations in 3D animations
- Constant speed motion along a circle arc with unit radius
- Properties:

\[
\begin{align*}
\mathcal{R}' & := \text{slerp}(\mathcal{R}, u) \\
\text{axisOf}(\mathcal{R}') & = \text{axisOf}(\mathcal{R}) \\
\text{angleOf}(\mathcal{R}') & = u \cdot \text{angleOf}(\mathcal{R})
\end{align*}
\]
Distributing the Rotational Residual

- Given the Q_k, we obtain

$$A'_k = Q_1 \cdots Q_k = Q_1:k A_k$$

- as well as

$$R'_k = A'_T A'_k$$

- and can then solve:

$$R'_1 = Q_1 R_1$$

$$R'_2 = (Q_1 R_1)^T Q_1:2 R_1:2 = R'_1 Q_1^T Q_1 Q_2 R_1 R_2$$

$$\vdots$$

$$R'_k = [(R_1:k-1)^T Q_k R_1:k-1] R_k$$
Distributing the Rotational Residual

- Resulting update rule

\[R'_k = (R_{1:k-1})^T Q_k R_{1:k} \]

- It can be shown that the change in each rotational residual is bounded by

\[\Delta r'_{k,k-1} \leq |\text{angleOf}(Q_k)| \]

- This bounds a potentially introduced error at node \(k \) when correcting a chain of poses including \(k \).
How to Determine u_k?

- The values of u_k describe the relative distribution of the error along the chain

$$ Q_k = \text{slerp}(Q, u_{k-1})^T \text{slerp}(Q, u_k) \quad u \in [0 \ldots \lambda] $$

- Here, we need to consider the uncertainty of the constraints

$$ u_k = \min\left(1, \lambda |\mathcal{P}_{ij}|\right) \left[\sum_{m \in \mathcal{P}_{ij} \land m \leq k} d_m^{-1} \right] \left[\sum_{m \in \mathcal{P}_{ij}} d_m^{-1} \right]^{-1} $$

$$ d_m = \sum_{\langle l,m \rangle} \min [\text{eigen}(\Omega_{lm})] $$

all constraints connecting m

- This assumes roughly spherical covariances!
Distributing the Translational Error

- That is trivial
- Just scale the x, y, z dimension
Summary of the Algorithm

- Decompose the problem according to the tree parameterization

- Loop:
 - Select a constraint
 - Randomly
 - Alternative: sample inverse proportional to the number of nodes involved in the update
 - Compute the nodes involved in the update
 - Nodes according to the parameterization tree
 - Reduce the error for this sub-problem
 - Reduce the rotational error (slerp)
 - Reduce the translational error
Complexity

- In each iteration, the approach considers all constraints.

- Each constraint optimization step requires to update a set of nodes (on average: the average “path length according to the tree”).

- This results in a complexity per iteration of

\[\mathcal{O}(M \cdot l) \]

where:
- \(M \) is the number of constraints
- \(l \) is the average path length (parameterization tree)
Cost of a Constraint Update

\[\approx O(M \cdot \log(N)) \]
Node Reduction

- Complexity grows with the length of the trajectory
- Bad for life-long learning
- Idea: Combine constraints between nodes if the robot is well-localized

\[
\Omega_{ij} = \Omega_{ij}^{(1)} + \Omega_{ij}^{(2)} \\
\delta_{ij} = \Omega_{ij}^{-1}(\Omega_{ij}^{(1)}\delta_{ij}^{(1)} + \Omega_{ij}^{(2)}\delta_{ij}^{(2)})
\]

- Similar to adding rigid constraints
- Complexity depends only on the size if the environment, not the length of the trajectory
Simulated Experiment

- Highly connected graph
- Poor initial guess
- 2200 nodes
- 8600 constraints
Spheres with Different Noise
Mapping the EPFL Campus

- 10km long trajectory with 3D laser scans
- Not easily tractable by most standard optimizers
Mapping the EPFL Campus
TORO vs. Olson’s Approach

Olson’s approach

1 iteration 10 iterations 50 iterations 100 iterations 300 iterations

TORO
TORO vs. Olson’s Approach
Time Comparison (2D)

![Bar chart showing execution time per iteration for different methods and numbers of constraints. The x-axis represents the number of constraints (3.7k, 30k, 64k, 360k, 720k, 1.9M), and the y-axis represents execution time per iteration in seconds. The methods compared include Olson’s algorithm, Olson’s algorithm with spherical covariances, MLR, Our approach, and Our approach with node reduction.]
Robust to the Initial Guess

- Random initial guess
- Intel dataset as the basis for 16 floors distributed over 4 towers

initial configuration intermediate result final result (50 iterations)
TORO Summary

- Robust to bad initial configurations
- Efficient technique for ML map estimation
- Works in 2D and 3D
- Scales up to millions of constraints
- Available at OpenSLAM.org
 http://www.openslam.org/toro.html
Drawbacks of TORO

- The slerp-based update rule optimizes rotations and translations separately.
- It assume roughly spherical covariance ellipses.
- It is a maximum likelihood technique. **No covariance estimates!**
- Approach of Tipaldi et al. accurately estimates the covariances after convergence [Tipaldi et al., 2007]
Data Association

- TORO computes the mean of the distribution given the data associations
- To determine the data associations, we need the uncertainty about the nodes’ poses
- Approaches to compute the uncertainties:
 - Matrix inversion
 - Loopy belief propagation
 - Belief propagation on a spanning tree
 - **Loopy intersection propagation**
Graphical SLAM as a GMRF

- Factor the distribution
 - **local** potentials
 - **pairwise** potentials

\[
p(x) = \frac{1}{Z} \prod_{i=1}^{n} \phi_i(x_i) \prod_{j=i+1}^{n} \phi_{i,j}(x_i, x_j)
\]

Gaussian in canonical form
Belief Propagation

- Inference by local message passing
- Iterative process
 - **Collect** messages
 \[m_i^{(t)} = \eta_i + \sum_{j \in \mathcal{N}_i} m_{ji}^{(t-1)} \]
 \[M_i^{(t)} = \Omega_i + \sum_{j \in \mathcal{N}_i} M_{ji}^{(t-1)} \]
 - **Send** messages
 \[m_{ij}^{(t)} = \eta_{ij}^{(t)} \Omega_{ij}^{[ij]} \left(\Omega_{ij}^{[ii]} + M_i^{(t)} M_{ji}^{(t-1)} \right)^{-1} \left(\eta_{ij}^{(t)} + m_i^{(t)} m_{ij}^{(t-1)} \right)^{-1} \]
 \[M_{ij}^{(t)} = \Omega_{ij}^{[ij]} - \Omega_{ij}^{[ji]} \left(\Omega_{ij}^{[ii]} + M_i^{(t)} M_{ji}^{(t-1)} \right)^{-1} \eta_{ij}^{(t)} \]

Ignore the math!
Belief Propagation - Trees

- Exact inference
- Message passing
- Two iterations
 - From leaves to root: **variable elimination**
 - From root to leaves: **back substitution**
Belief Propagation - Loops

- Approximation
- Multiple paths
- Overconfidence
 - Correlations between path A and path B
- How to integrate information at D?
Covariance Intersection

- Fusion rule for unknown correlations
- Combine A and B to obtain C

$$\Sigma_C = (\omega \Sigma_A^{-1} + (1 - \omega) \Sigma_B^{-1})^{-1}$$
$$\mu_C = \Sigma_C(\omega \Sigma_A^{-1} \mu_A + (1 - \omega) \Sigma_B^{-1} \mu_B)$$
Loopy Intersection Propagation

Key ideas

- Exact inference on a spanning tree computed via **cutting matrices**
- Augment the tree with information coming from loops within **local potentials** (priors)
- Apply belief propagation
Approximation via Cutting Matrix

- Removal as matrix subtraction
 \[\hat{\Omega} = \Omega - K \]
- Regular cutting matrix
- Cut all off-tree edges

\[
K_{BD} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \Omega_{BB} & 0 & \Omega_{BD} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \Omega_{DB} & 0 & \Omega_{DD} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
Fusing Loops with Spanning Trees

- Estimate A and B

$$
E_{BD}^{[D]} = \Omega_{BD}^{[BB]} - \Omega_{BD}^{[BD]} (M_B + \Omega_{BD}^{[DD]})^{-1} \Omega_{BD}^{[DB]} \\
E_{BD}^{[B]} = \Omega_{BD}^{[DD]} - \Omega_{BD}^{[DB]} (M_B + \Omega_{BD}^{[BB]})^{-1} \Omega_{BD}^{[BD]}
$$

- Fuse the estimates

$$\hat{M}_B = \omega_B M_B + (1 - \omega_B) E_{BD}^{[B]} \Rightarrow \text{Covariance Intersection!}$$

$$\hat{M}_D = \omega_D M_D + (1 - \omega_D) E_{BD}^{[D]}$$

- Compute the priors

$$P_{i,j}^{[k]} = \hat{M}_k - M_k$$
Remove Edge and Add Priors

- Removal of the edge and adding priors realized as a matrix subtraction

\[\hat{\Omega} = \Omega - K \]

\[
K_{BD} = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & \Omega_{BD}^{[BB]} - P_{BD}^{[B]} & 0 & 0 \\
0 & 0 & \Omega_{BD}^{[BB]} & 0 \\
0 & \Omega_{BD}^{[DB]} & 0 & \Omega_{BD}^{[DD]} - P_{BD}^{[D]} \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
LIP – Algorithm

1. Compute a spanning tree
2. Run belief propagation on the tree
3. For every off-tree edge
 1. compute the off-tree estimates,
 2. compute the new priors, and
 3. delete the edge
4. Re-run belief propagation
Results

Loopy belief propagation

Overconfident

Spanning tree belief propagation

Too conservative
Results

Loopy intersection propagation
Conclusions

- TORO - Efficient maximum likelihood algorithm for 2D and 3D graphs of poses
- No covariance estimates!
- Approach for recovering the covariance matrices via belief propagation and covariance intersection
 - Linear time complexity
 - Tight estimates
 - Generally conservative (not guaranteed!)