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Overview

= Regression problem

= Gaussian process models
= Learning GPs

= Applications

= Summary



The Regression Problem
= Given n observed points

X ={(z1,t1),..., (@n,tn)}, =z €RY, t; €R

= Assuming the dependency

by = f(mz) + €, €~ N(07 0-2)7 i.1.d

= How to predict new points

p(th+1 | Ty, X)



The Regression Problem

= Given n observed points
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The Regression Problem

= Solution 1: Parametric models

= Quadratic f(z;) =cg + c1z; -

= Higher order polynomials

- 02337;2 + €;

= L earning: optimizing the parameters
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The Regression Problem

= Solution 2: Non-parametric models
= Radial Basis functions

k(| 2 —c||) o e Bllz=cl®

= Histograms, Splines, Support Vector
Machines ...

= Learning: finding the structure of the
model and optimize its parameters



The Regression Problem

= Given n observed points
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The Regression Problem

= Solution 3: Express t = f(z;) + ¢
directly in terms of the data points

= [dea: Any finite set of values ¢;
sampled from (t4,...,tn) ~ N(0,K)
has a joint Gaussian distribution
with a covariance matrix K given by

kij = cov(t;, t;) = cov(f(xz;), f(z;))

=: c(zj, x;)



Gaussian Process Models

= Then, the n+1 dimensional vector
(f(@1),. - F(@n), F(Tpt1))

which includes the new target to be
predicted t,4+1 = f(zp4+1), comes from
an n+1 dimensional Gaussian

= The predictive distribution for the
new target p(tp+1|zpt1,.X) IS @
1-dimensional Gaussian



Gaussian Process Model

= Given the n observed points

= Squared exponential covariance
function

. . 2
c(x;, x5) = J% - €XP (_ L 52%) ) | 5(7j=j)07%

= with of = %, ¢ =05, M
= and a noise level o3




The Regression Problem

= Given n observed points
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Gaussian Process Models

= GP model
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Learning GPs

= The squared exponential
covariance function:

index/input distance

N
c(x;,z;) = a% . exp (_ (337,22339) ) | 5(7;:]-)0,,%
- - —
amplitude characteristic noise level
lengthscale

= Easy to interpret parameters



Learning GPs

= Example: low noise
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Learning GPs

= Exam
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Learning GPs

= Example: high noise
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Learning GPs

= Example: small lengthscale
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Learning GPs

= Example: large lengthscale
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Learning GPs

= Covariance function

output, f(x)
output, f(x)

specifies the prior

input, X

posterior



Gaussian Process Models

= Recall, the n+1 dimensional vector

(f(@1),. - F(@n), F(Tpt1))

comes from an n+1 dimensional
normal distribution

= The predictive distribution for the
new target p(t,+1 | Tp+1,X) IS @
1-dimensional Gaussian.

= Why?



The Gaussian Distribution

= Recall the 2-dimensional joint Gaussian:

—joint Gaussian

—joint Gaussian
—conditional

——marginal

/\

= The conditionals and the marginals
are aISO GaUSSIanS Figure taken from

Carl E. Rasmussen:
NIPS 2006 Tutorial




The Gaussian Distribution

= Simple bivariate example:
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The Gaussian Distribution

= Simple bivariate example:

p(z,y) = N(0, ) !

-

2
—_— Jx O
2= O 03
(z,y) : exp L(2
T,Y) = —
PRE Y TOxOy 2 \ o2
p(x,y) joint
p(z |y) = |
p(y) —— marginal
L conditional



The Gaussian Distribution
= Marginalization:

p(y) = /p(:v,y) dx
1 1 (22
/ exp | —= |
2O L0y 2 \ o2 05

_ 1 e 1y?
oyV 2T 205

J

N(0,07)



The Gaussian Distribution
= The conditional:

_ plz,y) _
p(z|y) = ()

L o2 x? | y? L N ¥ i
2TO L0y 2 \ o2 | 05 oyV 22T 205

p(z,y) p(y)~1




The Gaussian Distribution

= Slightly more complicated in the general
case:

—joint Gaussian

—joint Gaussian
—conditional

——marginal

/\

= The conditionals and the marginals
are also Gaussians

Figure taken from
Carl E. Rasmussen:
NIPS 2006 Tutorial



The Gaussian Distribution

= Conditioning the joint Gaussian in general
A B
p(z,y) =N<(§),(BT G ))
p(z |y) = N(a+BC ' (y —b),A — BC™'B')
= In case of zero mean:

pa) =N, (g ¢ )

p(z|y) = N(BC~ly, A — BC1B")



Gaussian Process Models

= Recall the GP assumption

t ~ N(0,K)

(1)~ (4 0)

tpy1 |t~ N (@™, 0%)



Gaussian Process Models

= Noise-free mean and variance of the
predictive distribution have the form

P =E(tyt1 |t t) = KT KMt
o* =V (tpyr | t1, - tn) =v—kIK 1k

= with
(6(361,16'1) C($1,37n) ] (C(xlaajn—l—l)\
K = k = .
\ c(Tn,Tn) | c(zn, Tpa)
4 tl N
U = C(xn—l—laajn—l—l) t =




Gaussian Process Models

= Mean and variance of the predictive
distribution then lead to

pt=k(K +To7) Mt
o* = c(zpt1,Tn41) — K (K +107) "'k

= with

K =

c(x1,71)

c(z1,2n)

c(xn, Tn) ]

(C(QZ]_, ajn—l—l) ]

\C(mna ZEn_|_]_) )



Learning GPs

= Learning a Gaussian process means
= choosing a covariance function
* finding its parameters and the noise level

= What is the objective?



Learning GPs

= The hyperparameters
0 ={op,(l1,...,ln), 02}

can be found by maximizing the
likelihood of the training data

0 = argmaxy log p(t1,...,tn | x1,...,2n,0),

e.d., using gradient methods



Learning GPs
= Objective: high data likelihood

1 _ 1 n
logp(t | x) = —EtT(K—l—a?L) 1t—5 log \K—l—a%l\—5 log 27

data fit complexity const.
penalty

= Due to the Gaussian assumption,
GPs have Occam’s razor built in



Occam's Razor

= Use the simplest explanation that is
needed to describe the data
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= Complexity penalty favors simplicity



Advanced Topics / Extensions

= Classification/non-Gaussian noise

= Sparse GPs: Approximations for large
data sets

= Heteroscedastic GPs: Modeling non-
constant noise

= Nonstationary GPs: Modeling varying
smoothness (lengthscales)

= Mixtures of GPs
= Uncertain inputs



Further Reading

Rasmussen and Williams
Gaussian Processes for Machine Learning,
MIT Press, 2006.

http://www.GaussianProcess.org/gpml

Carl Edward Rasmussen and Christopher K. |. Williams

Gaussian process web (code, papers, etc): http://www.GaussianProcess.org



Applications in Robotics

= Monocular range sensing

= Terrain modeling

= L earning sensor models

= | earning to control a blimp

= | ocalization in cellular networks
= Time-series forecasting
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Monocular Range Sensing

= Can we learn range from single,
monocular camera images?



Training Setup

= Mobile robot + laser range finder
= Omni-directional monocular camera

Focal/point
g Mirror

Obstacle

Camera

i Range sensor

(@) (@)




Training Setup

DFKI Saarbriicken University of Freiburg




Learning Range from Vision

= Associate (polar) pixel columns with ranges

p; € R420

l Extract features

x; = f(P;)

l Associate with ranges

r, =r(x;) €R




Pre-processing

= Warp images into a panoramic view

= 120 pixels per column

* Transform to HSV -> 420 dimensions



Visual Features

= Two types of features

1. No human engineering: Principle
components analysis (PCA) on raw input

2. Use of domain specific knowledge: Edge
features that shall correspond to floor
boundaries



Experiments

Typical 180° scan
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Online Prediction

Visual features

Results: Range predictions from visual input




Mapping Results

Laser-based Vision-based
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GP-based Terrain Modeling

= 3D terrain models are important in
many tasks in outdoor robotics




Terrain Modeling

= Given: observations of the terrain
surface

= Task: Learn a predictive model
= Classic Approach: Elevation grid maps




GP-Based Approach

= Generalize the grid-based model to
fully continuous spaces by viewing
the problem as function regression

= Requirements

» Probabilistic formulation to handle
uncertainty

= Ability to adapt to the spatial
structures



Covariance Function

= Standard covariance function have
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Covariance Function
= What is optimal in this case?

A O N 2 O =~ N W A




Local Kernel Adaptation

= Adapt kernels based on the terrain
gradients

= Covariance is adjusted according to the
change in terrain elevation in the local
neighborhood

local average

l

Y = EST(xi)" ' = (Vy(x1))(Vy(xy))T

O\

elevation gradient




Adapting to Local Structures

Stationary GP Non-stationary GP
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Adapting to Local Structure

« Model to deal with slowly changing
characteristics and strong
discontinuities
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Experiments

standard
‘adaptive




Experiments

Observation (with
white noise 6=0.3)

Kernels Predicted Map Local errors




Experiments — Stone Block
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Experiments — Stone Block
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Experiments — Stone Block
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Experiments - Slope
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Summary

= GPs are a flexible and practical
approach to Bayesian regression

= Prior knowledge is encoded in a
human understandable way

= Learned models can be interpreted

= Efficiency mainly depends on the
number of training points

= Real-world problem sizes require
approximations/sparsityy/...



