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Recap K-Means

« Can be applied for clustering data

« Computes new centroids for the clusters in
an iterative manner

= Converges to a local optimum
« Uses a fixed variance

« But the shapes of the clusters can be
different in reality!



Motivation
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k-means Clustering based on a
mixture of Gaussians

image source: wikipedia



Mixtures of Gaussians

Assume that the data points are generated by
sampling from a continuous function

A mixture of Gaussians is such a generative
model

K Gaussians with means px and covariance
matrices >.;

Each point is generated from one mixture
component (but we don’t know from which one)

Use mixing coefficients g (probability that a
data point is generated from component k)



EM for Gaussian Mixtures
Models (GMMs)

« E-step: Softly assign data points to mixture
components

_ N (X |pe, Xk
Cot = | )

K
_— > N (X |25, 25)
j=1

data point

mixture component

« Similar to k-means but considers mixing
coefficients



EM for Gaussian Mixtures
Models (GMMs)

« E-step: Softly assign data points to mixture

Components
- TN (Xn |k, k)
nk — K

Z WjN(Xn |,uj,2j)

Jj=1

= M-step: Re-estimate the parameters for each
mixture component based on the soft assignments
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EM with GMMs
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Properties of Gaussian Mixture
Models

« Can represent any continuous distribution

« Number of mixture components must be
estimated separately (as with k-means)

« EM for GMMs is computationally more
expensive than for k-means

« EM converges slower than for k-means
« Results depend on the initialization

« K-means can be used for initialization (to speed
up convergence and to find a “better” local
optimum)



Initialization with K-Means

= Run k-means N times
« Take best result (highest likelihood)
= Use this result to initialize EM for the GMM

= Set p; to the mean of cluster j from k-means

- Set >, to the covariance of the data points
associated with cluster j
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