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Target Tracking Overview 

  Detection is knowing the presence of an object 
(possibly with some attribute information)   

  Tracking is maintaining the state and identity of 
an object over time despite detection errors (false 
negatives, false alarms), occlusions, and the 
presence of other objects 

“Tracking is the estimation of the state of a moving 
object based on remote measurements.” [Bar-Shalom] 



Target Tracking Applications 

Air Traffic Control 

Surveillance 

Robotics, HRI 

Military 
Applications 

Fleet Management 

Motion Capture 



Tracking: Problem Types 
  Track stage 

  Track formation 
(initialization) 

  Track maintenance 
(continuation) 

  Number of sensors 
  Single sensor 
  Multiple sensors 

  Sensor characteristics 
  Detection probability (PD) 
  False alarm rate (PF) 

  Target behavior 
  Nonmaneuvering 
  Maneuvering 

  Number of targets 
  Single target 
  Multiple targets 

  Target size 
  Point-like target 
  Extended target 



Tracking: Error Types 
1.  Uncertainty in the values of measurements: 

 Called “noise” 

 ➔ Solution: Filtering (State estimation theory) 

2.  Uncertainty in the origin of measurements: 
 measurement might originate from sources different 
 from the target of interest. Reasons : 
  False alarms 
  Decoys and countermeasures 
  Multiple targets 

 ➔ Solution: Data Association 
  (Statistical decision theory) 



Tracking: Problem Statement 
  Given 

  Model of the system dynamics (process or plant model). 
Decribes the evolution of the state   

  Model of the sensor with which the target is observed 
  Probabilistic models of the random factors (noise 

sources) and the prior information 

  Wanted 
  System state estimate such as kinematic (e.g. position), 

feature (e.g. target class) or parameters components 

  In a way that... 
  Accuracy and/or reliability is higher than the raw 

measurements 
  Contains information not available in the measurements 



Tracking Algorithms 
  Single non-maneuvering target, no origin uncert. 

  Kalman filter (KF)/Extended Kalman filter (EKF) 

  Single maneuvering target, no origin uncertainty 
  KF/EKF with variable process noise  
  Muliple model approaches (MM) 

  Single non-maneuvering target, origin uncertainty 
  KF/EKF with Nearest/Strongest Neighbor Data Association 
  Probabilistic Data Association filter (PDAF) 

  Single maneuvering target, origin uncertainty 
  Multiple model-PDAF 



Tracking Algorithms 
  Multiple non-maneuvering targets 

  Joint Probabilistic Data Association filter (JPDAF) 
  Multiple Hypothesis Tracker (MHT) 

  Multiple maneuvering targets 
  MM-variants of MHT (e.g. IMMMHT) 

 
  Other Bayesian filtering schemes such as Particle 

filters have also been sucessfully applied to the 
tracking problem 



Linear Dynamic System (LDS) 
  A continuous-time Linear Dynamic System (LDS) 

can be described by a state equation of the form 
   

 Called process or plant model 

  The system can be observed remotely through 
  

 Called observation or measurement model 

  This is the State-Space Representation, omni-
present in physics, control or estimation theory 

  Provides the mathematical formulation for our 
estimation task 



Linear Dynamic System (LDS) 
  Stochastic process governed by 

            is the state vector 
            is the input vector 
            is the process noise 
                    is the system matrix 
                    is the input gain 

  The system can be observed through 

            is the measurement vector 
            is the measurement noise 
                     is the measurement matrix 



Discrete-Time LDS 
  Continuous model are difficult to realize 

  Algorithms work at discrete time steps 
  Measurements are acquired with certain rates 

  In practice, discrete models are employed 

  Discrete-time LDS are governed by 

                    is the state transition matrix 
                    is the discrete-time input gain 

  Same observation function of continuous models 



Discrete-Time LDS 
  Continuous model are difficult to realize 

  Algorithms work at discrete time steps 
  Measurements are acquired with certain rates 

  In practice, discrete models are employed 

  Discrete-time LDS are governed by 

                    is the state transition matrix 
                    is the discrete-time input gain 

  Same observation function of continuous models 

In target tracking, the input is unknown! 



LDS Example – Throwing ball 
  We want to throw a ball and compute 

its trajectory 
  This can be easily done with a LDS 
  No uncertainties, no tracking, just physics 
  The ball‘s state shall be represented as 
 

  We ignore winds but consider the gravity force g 

 

  No floor constraints 
  We observe the ball with a noise-free position sensor 

 



LDS Example – Throwing ball 
  Throwing a ball from s 

with initial velocity v 

  Consider only the gravity 
force, g, of the ball 

  State vector 

  Initial state 

  Input vector (scalar) 

  Measurement vector 

  Process matrices 

  Measurement matrix 

y 

s 

v 

x o 



LDS Example – Throwing ball 

  Initial State 

  No noise 
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LDS Example – Throwing ball 

  Initial State 

  It’s windy and our sensor 
is imperfect: let’s add 
Gaussian process and 
observation noise 
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Kalman Filter (KF) 
  The Kalman filter is the workhorse of tracking 

  Under linear Gaussian assumptions, the KF is the 
optimal minimum mean squared error (MMSE) 
estimator. It is still the optimal linear MMSE 
estimator if these conditions are not met 

  An “optimal” estimator is an algorithm that 
processes observations to yield a state estimate that 
minimizes a certain error criterion (e.g. RMS, MSE) 

  It is basically a (recursive) weighted sum of the 
prediction and observation. The weights are given by 
the process and the measurement covariances 

  See literature for detailed tutorials 



Kalman Filter (KF) 
  Consider a discrete time LDS with dynamic model 

 where      is the process noise (no input assumed) 

  The measurement model is  

 where      is the measurement noise  

  The initial state is generally unknown and modeled 
as a Gaussian random variable 

State estimate 

Covariance estimate 



Kalman Filter 
  State Prediction 

  Measurement Prediction 

  Update 



EKF: Error Propagation 
  Error Propagation is everywhere in Kalman filtering 

  From the uncertain previous state to the next state over 
the system dynamics 

  From the uncertain inputs to the state over the input gain 
relationship  

  From the uncertain predicted state to the predicted 
measurements over the measurement model 



Error Propagation Law 
Given 
  A linear system Y = FX⋅X 

 X, Y assumed to be Gaussian 
  Input covariance matrix CX  
  System matrix FX  

the Error Propagation Law 

 
computes the output covariance matrix CY 

46 



Error Propagation Law 
  Derivation in Matrix Notation 

47 

Blackboard... 



Error Propagation Law 
  Derivation in Matrix Notation 

48 



Kalman Filter Cycle 



Kalman Filter Cycle 

raw sensory data 

targets 

innovation from 
matched landmarks 

predicted 
measurements in 

sensor coordinates 

predicted 
state 

posterior 
state motion 

 model 

observation  
model 



KF Cycle 1/4: State prediction 
  State prediction 

  In target tracking, no a priori knowledge of the 
dynamic equation is generally available 

  Instead, different motion models (MM) are used 
  Brownian MM 
  Constant velocity MM 
  Constant acceleration MM 
  Constant turn MM 
  Specialized models (problem-related, e.g. ship models) 



Motion Models: Brownian 
No-motion assumption 
  Useful to describe stop-and-go motion behavior  

  State representation 

  Initial state 

  Transition matrix 

Ball example 
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MMs: Constant Velocity 
Constant target velocity assumption 
  Useful to model smooth target motion 
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Ball example 

State prediction: 
   Linear target motion 
   Uncertainty grows 



MMs: Constant Acceleration 
Constant target acceleration assumed 
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KF Cycle 2/4: Meas. Prediction 
  Measurement prediction 

  Observation 
Typically, only the target position is observed. 
The measurement matrix is then 

 Note: One can also observe 
  Velocity (Doppler radar) 
  Acceleration (accelerometers) 



KF Cycle 3/4: Data Association 
  Once measurements are predicted and observed, 

we have to associate them with each other 

  This is resolving the origin uncertainty 
of observations 

  Data association is typically done in the 
sensor reference frame 

  Data association can be a hard problem and 
many advanced techniques exist 
 
       More on this later in this course 



KF Cycle 3/4: Data Association 

  The difference between predicted measurement and 
observation is called innovation 

  The associated covariance estimate is called the 
innovation covariance 

  The prediction-observation pair is often called pairing 

 

Step 1:  Compute the pairing difference 
and its associated uncertainty 



KF Cycle 3/4: Data Association 

  Compute the Mahalanobis distance 

  Compare it against the proper threshold from an 
cumulative     (“chi square”) distribution 

 
 

 Compatibility on level α is finally given if this is true 

Step 2:  Check if the pairing is 
statistically compatible 

Degrees of freedom 

Significance level 



KF Cycle 3/4: Data Association 
  Constant velocity model 
  Process noise 

  Measurement noise 

  No false alarm 

 No problem  



KF Cycle 3/4: Data Association 
  Constant velocity model 
  Process noise 

  Measurement noise 

  Uniform false alarm  

  False alarm rate = 3 

 Ambiguity: several observations in the validation gate  



KF Cycle 3/4: Data Association 
  Constant velocity model 
  Process noise 

  Measurement noise 

  Uniform false alarm  

  False alarm rate = 3 

 Wrong association as closest observation is false alarm  
 



KF Cycle 4/4: Update  
  Computation of the Kalman gain 

  State and state covariance update  



KF Cycle 4/4: Update  

80 

prediction measurement 

correction 

It's a weighted mean! 



Kalman Filter Cycle 
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predicted 
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Kalman Filter: Limitations 
  Non-linear motion models and/or non-linear 

measurement models 
  Extended Kalman filter 

  Unknown inputs into the dynamic process model 
(values and modes) 
  Enlarged process noise (simple but there are implications) 
  Multiple model approaches (accounts for mode changes) 

  Uncertain origin of measurements 
  Data Association 

  How many targets are there? 
  Track formation and deletion techniques 
  Multiple Hypothesis Tracker (MHT) 



Extended Kalman Filter 
  The Extended Kalman filter deals with non-linear 

process and non-linear measurement models 

  Consider a discrete time LDS with dynamic model 

 where      is the process noise (no input assumed) 

  The measurement model is  

 where      is the measurement noise  

  The same KF-assumptions for the initial state 



Kalman Filter 
  State Prediction 

  Measurement Prediction 

  Update 



Extended Kalman Filter 
  State Prediction 

  Measurement Prediction 

  Update 

Jacobian 

Jacobian 



Given 
  A non-linear system Y = f(X) 

 X,Y assumed to be Gaussian 
  Input covariance matrix CX  
  Jacobian matrix FX  

the Error Propagation Law 

 
computes the output covariance matrix CY 

First-Order Error Propagation 

86 



First-Order Error Propagation 
  Approximating f(X) by a first-order Taylor series 

expansion about the point X = µX 

87 



Jacobian Matrix 
  It’s a non-square matrix           in general 

  Suppose you have a vector-valued function 

  Let the gradient operator be the vector of (first-order) 
partial derivatives 

  Then, the Jacobian matrix is defined as 

88 



Jacobian Matrix 
  It’s the orientation of the tangent plane to the vector-

valued function at a given point 

 
 
 
 

  Generalizes the gradient of a scalar valued function  

89 



Track Management 

Formation 
  When to create a new track? 
  What is the initial state? 

Heuristics: 
  Greedy initialization 

  Every observation not  
associated is a new track 

  Initialize only position 
  Lazy initialization 

  Accumulate several 
unassociated observations  

  Initialize position & velocity 

Occlusion/deletion 
  When to delete a track? 
  Is it just occluded? 

Heuristics: 
  Greedy deletion 

  Delete if no observation can 
be associated 

  No occlusion handling 
  Lazy deletion 

  Delete if no observation can 
be associated for several 
time steps 

  Implicit occlusion handling 



Example: Tracking the Ball  
  Unlike the previous experiment in 

which we had a model of the ball’s 
trajectory and just observed it, 
we now want to track the ball 

  Comparison: small versus large process noise Q 
and the effect of the three different motion models 

  For simplicity, we perform no gaiting (i.e. no 
Mahalanobis test) but accept the pairing every time 
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Ball Tracking: Const. Acceleration 
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very small 
difference! 



Summary 
  Tracking is maintaining the state and identity of a 

moving object over time despite detection 
errors (false negatives, false alarms), 
occlusions, and the presence of other objects  

  Linear Dynamic Systems (a.k.a. the state-space 
representation) provide the mathematical 
framework for estimation 

  For tracking, there is no control input u in the 
process model. Therefore good motion models are 
key 

  The Kalman filter is a recurse Bayes filter that 
follows the typical predict-update cycle 



Summary 
  The Extended Kalman filter (EKF) is for cases of 

non-linear process or measurement models. It 
computes the Jacobians, first-order linearizations 
of the models, and has the same expressions than 
the KF 

  A large process noise covariance can partly  
compensate a poor motion model for 
maneuvering targets 

  But: large process noise covariances cause the 
validation gates to be large which in turn increases 
the level of ambiguity for data association. This 
is potentially problematic in case of multiple targets 


