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Target Tracking Overview 

  Detection is knowing the presence of an object 
(possibly with some attribute information)   

  Tracking is maintaining the state and identity of 
an object over time despite detection errors (false 
negatives, false alarms), occlusions, and the 
presence of other objects 

“Tracking is the estimation of the state of a moving 
object based on remote measurements.” [Bar-Shalom] 



Target Tracking Applications 

Air Traffic Control 

Surveillance 

Robotics, HRI 

Military 
Applications 

Fleet Management 

Motion Capture 



Tracking: Problem Types 
  Track stage 

  Track formation 
(initialization) 

  Track maintenance 
(continuation) 

  Number of sensors 
  Single sensor 
  Multiple sensors 

  Sensor characteristics 
  Detection probability (PD) 
  False alarm rate (PF) 

  Target behavior 
  Nonmaneuvering 
  Maneuvering 

  Number of targets 
  Single target 
  Multiple targets 

  Target size 
  Point-like target 
  Extended target 



Tracking: Error Types 
1.  Uncertainty in the values of measurements: 

 Called “noise” 

 ➔ Solution: Filtering (State estimation theory) 

2.  Uncertainty in the origin of measurements: 
 measurement might originate from sources different 
 from the target of interest. Reasons : 
  False alarms 
  Decoys and countermeasures 
  Multiple targets 

 ➔ Solution: Data Association 
  (Statistical decision theory) 



Tracking: Problem Statement 
  Given 

  Model of the system dynamics (process or plant model). 
Decribes the evolution of the state   

  Model of the sensor with which the target is observed 
  Probabilistic models of the random factors (noise 

sources) and the prior information 

  Wanted 
  System state estimate such as kinematic (e.g. position), 

feature (e.g. target class) or parameters components 

  In a way that... 
  Accuracy and/or reliability is higher than the raw 

measurements 
  Contains information not available in the measurements 



Tracking Algorithms 
  Single non-maneuvering target, no origin uncert. 

  Kalman filter (KF)/Extended Kalman filter (EKF) 

  Single maneuvering target, no origin uncertainty 
  KF/EKF with variable process noise  
  Muliple model approaches (MM) 

  Single non-maneuvering target, origin uncertainty 
  KF/EKF with Nearest/Strongest Neighbor Data Association 
  Probabilistic Data Association filter (PDAF) 

  Single maneuvering target, origin uncertainty 
  Multiple model-PDAF 



Tracking Algorithms 
  Multiple non-maneuvering targets 

  Joint Probabilistic Data Association filter (JPDAF) 
  Multiple Hypothesis Tracker (MHT) 

  Multiple maneuvering targets 
  MM-variants of MHT (e.g. IMMMHT) 

 
  Other Bayesian filtering schemes such as Particle 

filters have also been sucessfully applied to the 
tracking problem 



Linear Dynamic System (LDS) 
  A continuous-time Linear Dynamic System (LDS) 

can be described by a state equation of the form 
   

 Called process or plant model 

  The system can be observed remotely through 
  

 Called observation or measurement model 

  This is the State-Space Representation, omni-
present in physics, control or estimation theory 

  Provides the mathematical formulation for our 
estimation task 



Linear Dynamic System (LDS) 
  Stochastic process governed by 

            is the state vector 
            is the input vector 
            is the process noise 
                    is the system matrix 
                    is the input gain 

  The system can be observed through 

            is the measurement vector 
            is the measurement noise 
                     is the measurement matrix 



Discrete-Time LDS 
  Continuous model are difficult to realize 

  Algorithms work at discrete time steps 
  Measurements are acquired with certain rates 

  In practice, discrete models are employed 

  Discrete-time LDS are governed by 

                    is the state transition matrix 
                    is the discrete-time input gain 

  Same observation function of continuous models 



Discrete-Time LDS 
  Continuous model are difficult to realize 

  Algorithms work at discrete time steps 
  Measurements are acquired with certain rates 

  In practice, discrete models are employed 

  Discrete-time LDS are governed by 

                    is the state transition matrix 
                    is the discrete-time input gain 

  Same observation function of continuous models 

In target tracking, the input is unknown! 



LDS Example – Throwing ball 
  We want to throw a ball and compute 

its trajectory 
  This can be easily done with a LDS 
  No uncertainties, no tracking, just physics 
  The ball‘s state shall be represented as 
 

  We ignore winds but consider the gravity force g 

 

  No floor constraints 
  We observe the ball with a noise-free position sensor 

 



LDS Example – Throwing ball 
  Throwing a ball from s 

with initial velocity v 

  Consider only the gravity 
force, g, of the ball 

  State vector 

  Initial state 

  Input vector (scalar) 

  Measurement vector 

  Process matrices 

  Measurement matrix 

y 

s 

v 

x o 



LDS Example – Throwing ball 

  Initial State 

  No noise 
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System evolution       Observations 
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LDS Example – Throwing ball 

  Initial State 

  It’s windy and our sensor 
is imperfect: let’s add 
Gaussian process and 
observation noise 
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Kalman Filter (KF) 
  The Kalman filter is the workhorse of tracking 

  Under linear Gaussian assumptions, the KF is the 
optimal minimum mean squared error (MMSE) 
estimator. It is still the optimal linear MMSE 
estimator if these conditions are not met 

  An “optimal” estimator is an algorithm that 
processes observations to yield a state estimate that 
minimizes a certain error criterion (e.g. RMS, MSE) 

  It is basically a (recursive) weighted sum of the 
prediction and observation. The weights are given by 
the process and the measurement covariances 

  See literature for detailed tutorials 



Kalman Filter (KF) 
  Consider a discrete time LDS with dynamic model 

 where      is the process noise (no input assumed) 

  The measurement model is  

 where      is the measurement noise  

  The initial state is generally unknown and modeled 
as a Gaussian random variable 

State estimate 

Covariance estimate 



Kalman Filter 
  State Prediction 

  Measurement Prediction 

  Update 



EKF: Error Propagation 
  Error Propagation is everywhere in Kalman filtering 

  From the uncertain previous state to the next state over 
the system dynamics 

  From the uncertain inputs to the state over the input gain 
relationship  

  From the uncertain predicted state to the predicted 
measurements over the measurement model 



Error Propagation Law 
Given 
  A linear system Y = FX⋅X 

 X, Y assumed to be Gaussian 
  Input covariance matrix CX  
  System matrix FX  

the Error Propagation Law 

 
computes the output covariance matrix CY 

46 



Error Propagation Law 
  Derivation in Matrix Notation 

47 

Blackboard... 



Error Propagation Law 
  Derivation in Matrix Notation 

48 



Kalman Filter Cycle 



Kalman Filter Cycle 

raw sensory data 

targets 

innovation from 
matched landmarks 

predicted 
measurements in 

sensor coordinates 

predicted 
state 

posterior 
state motion 

 model 

observation  
model 



KF Cycle 1/4: State prediction 
  State prediction 

  In target tracking, no a priori knowledge of the 
dynamic equation is generally available 

  Instead, different motion models (MM) are used 
  Brownian MM 
  Constant velocity MM 
  Constant acceleration MM 
  Constant turn MM 
  Specialized models (problem-related, e.g. ship models) 



Motion Models: Brownian 
No-motion assumption 
  Useful to describe stop-and-go motion behavior  

  State representation 

  Initial state 

  Transition matrix 

Ball example 



No-motion assumption 
  Useful to describe stop-and-go motion behavior  

  State representation 

  Initial state 

  Transition matrix 

Motion Models: Brownian 

State prediction: 
   Uncertainty grows 

Ball example 
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MMs: Constant Velocity 
Constant target velocity assumption 
  Useful to model smooth target motion 

  State representation 

  Initial state 
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MMs: Constant Acceleration 
Constant target acceleration assumed 
  Useful to model target motion that is smooth in position 

and velocity changes 

  State representation 
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KF Cycle 2/4: Meas. Prediction 
  Measurement prediction 

  Observation 
Typically, only the target position is observed. 
The measurement matrix is then 

 Note: One can also observe 
  Velocity (Doppler radar) 
  Acceleration (accelerometers) 



KF Cycle 3/4: Data Association 
  Once measurements are predicted and observed, 

we have to associate them with each other 

  This is resolving the origin uncertainty 
of observations 

  Data association is typically done in the 
sensor reference frame 

  Data association can be a hard problem and 
many advanced techniques exist 
 
       More on this later in this course 



KF Cycle 3/4: Data Association 

  The difference between predicted measurement and 
observation is called innovation 

  The associated covariance estimate is called the 
innovation covariance 

  The prediction-observation pair is often called pairing 

 

Step 1:  Compute the pairing difference 
and its associated uncertainty 



KF Cycle 3/4: Data Association 

  Compute the Mahalanobis distance 

  Compare it against the proper threshold from an 
cumulative     (“chi square”) distribution 

 
 

 Compatibility on level α is finally given if this is true 

Step 2:  Check if the pairing is 
statistically compatible 

Degrees of freedom 

Significance level 



KF Cycle 3/4: Data Association 
  Constant velocity model 
  Process noise 

  Measurement noise 

  No false alarm 

 No problem  



KF Cycle 3/4: Data Association 
  Constant velocity model 
  Process noise 

  Measurement noise 

  Uniform false alarm  

  False alarm rate = 3 

 Ambiguity: several observations in the validation gate  



KF Cycle 3/4: Data Association 
  Constant velocity model 
  Process noise 

  Measurement noise 

  Uniform false alarm  

  False alarm rate = 3 

 Wrong association as closest observation is false alarm  
 



KF Cycle 4/4: Update  
  Computation of the Kalman gain 

  State and state covariance update  



KF Cycle 4/4: Update  

80 

prediction measurement 

correction 

It's a weighted mean! 



Kalman Filter Cycle 

raw sensory data 

targets 

innovation from 
matched landmarks 

predicted 
measurements in 

sensor coordinates 

predicted 
state 

posterior 
state motion 

 model 

observation  
model 



Kalman Filter: Limitations 
  Non-linear motion models and/or non-linear 

measurement models 
  Extended Kalman filter 

  Unknown inputs into the dynamic process model 
(values and modes) 
  Enlarged process noise (simple but there are implications) 
  Multiple model approaches (accounts for mode changes) 

  Uncertain origin of measurements 
  Data Association 

  How many targets are there? 
  Track formation and deletion techniques 
  Multiple Hypothesis Tracker (MHT) 



Extended Kalman Filter 
  The Extended Kalman filter deals with non-linear 

process and non-linear measurement models 

  Consider a discrete time LDS with dynamic model 

 where      is the process noise (no input assumed) 

  The measurement model is  

 where      is the measurement noise  

  The same KF-assumptions for the initial state 



Kalman Filter 
  State Prediction 

  Measurement Prediction 

  Update 



Extended Kalman Filter 
  State Prediction 

  Measurement Prediction 

  Update 

Jacobian 

Jacobian 



Given 
  A non-linear system Y = f(X) 

 X,Y assumed to be Gaussian 
  Input covariance matrix CX  
  Jacobian matrix FX  

the Error Propagation Law 

 
computes the output covariance matrix CY 

First-Order Error Propagation 

86 



First-Order Error Propagation 
  Approximating f(X) by a first-order Taylor series 

expansion about the point X = µX 

87 



Jacobian Matrix 
  It’s a non-square matrix           in general 

  Suppose you have a vector-valued function 

  Let the gradient operator be the vector of (first-order) 
partial derivatives 

  Then, the Jacobian matrix is defined as 

88 



Jacobian Matrix 
  It’s the orientation of the tangent plane to the vector-

valued function at a given point 

 
 
 
 

  Generalizes the gradient of a scalar valued function  

89 



Track Management 

Formation 
  When to create a new track? 
  What is the initial state? 

Heuristics: 
  Greedy initialization 

  Every observation not  
associated is a new track 

  Initialize only position 
  Lazy initialization 

  Accumulate several 
unassociated observations  

  Initialize position & velocity 

Occlusion/deletion 
  When to delete a track? 
  Is it just occluded? 

Heuristics: 
  Greedy deletion 

  Delete if no observation can 
be associated 

  No occlusion handling 
  Lazy deletion 

  Delete if no observation can 
be associated for several 
time steps 

  Implicit occlusion handling 



Example: Tracking the Ball  
  Unlike the previous experiment in 

which we had a model of the ball’s 
trajectory and just observed it, 
we now want to track the ball 

  Comparison: small versus large process noise Q 
and the effect of the three different motion models 

  For simplicity, we perform no gaiting (i.e. no 
Mahalanobis test) but accept the pairing every time 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 

Small process noise Large process noise 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  

Ground truth          Observations             State estimate 



Ball Tracking: Brownian  
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large difference! 
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Ball Tracking: Const. Acceleration 
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very small 
difference! 



Summary 
  Tracking is maintaining the state and identity of a 

moving object over time despite detection 
errors (false negatives, false alarms), 
occlusions, and the presence of other objects  

  Linear Dynamic Systems (a.k.a. the state-space 
representation) provide the mathematical 
framework for estimation 

  For tracking, there is no control input u in the 
process model. Therefore good motion models are 
key 

  The Kalman filter is a recurse Bayes filter that 
follows the typical predict-update cycle 



Summary 
  The Extended Kalman filter (EKF) is for cases of 

non-linear process or measurement models. It 
computes the Jacobians, first-order linearizations 
of the models, and has the same expressions than 
the KF 

  A large process noise covariance can partly  
compensate a poor motion model for 
maneuvering targets 

  But: large process noise covariances cause the 
validation gates to be large which in turn increases 
the level of ambiguity for data association. This 
is potentially problematic in case of multiple targets 


