Chapter Contents

- Target Tracking Overview
 - Applications
 - Types of Problems and Errors
 - Algorithms
- Linear Discrete Systems (LDS)
- Kalman Filter (KF)
 - Overview
 - Error Propagation
 - Estimation Cycle
 - Limitations
- Extended Kalman Filter (EKF)
 - Overview
 - First-Order Error Propagation
- Tracking Example
Target Tracking Overview

“Tracking is the estimation of the state of a moving object based on remote measurements.” [Bar-Shalom]

- **Detection** is knowing the presence of an object (possibly with some attribute information)

- **Tracking** is maintaining the state and identity of an object over time despite detection errors (false negatives, false alarms), occlusions, and the presence of other objects
Target Tracking Applications

Air Traffic Control

Fleet Management

Surveillance

Motion Capture

Robotics, HRI

Military Applications
Tracking: Problem Types

- **Track stage**
 - Track formation (initialization)
 - Track maintenance (continuation)

- **Number of sensors**
 - Single sensor
 - Multiple sensors

- **Sensor characteristics**
 - Detection probability (PD)
 - False alarm rate (PF)

- **Target behavior**
 - Nonmaneuvering
 - Maneuvering

- **Number of targets**
 - Single target
 - Multiple targets

- **Target size**
 - Point-like target
 - Extended target
Tracking: Error Types

1. Uncertainty in the values of measurements: Called “noise”
 → Solution: **Filtering** (State estimation theory)

2. Uncertainty in the origin of measurements: measurement might originate from sources different from the target of interest. Reasons:
 - False alarms
 - Decoys and countermeasures
 - Multiple targets

 → Solution: **Data Association**
 (Statistical decision theory)
Tracking: Problem Statement

▪ **Given**
 ▪ Model of the **system dynamics** (process or plant model). Describes the evolution of the state
 ▪ Model of the **sensor** with which the target is observed
 ▪ Probabilistic models of the **random factors** (noise sources) and the prior information

▪ **Wanted**
 ▪ System state estimate such as **kinematic** (e.g. position), **feature** (e.g. target class) or **parameters** components

▪ **In a way that...**
 ▪ Accuracy and/or reliability is higher than the raw measurements
 ▪ Contains information not available in the measurements
Tracking Algorithms

- Single non-maneuvering target, **no** origin uncertainty
 - Kalman filter (KF)/Extended Kalman filter (EKF)

- Single maneuvering target, **no** origin uncertainty
 - KF/EKF with variable process noise
 - Multiple model approaches (MM)

- Single non-maneuvering target, **origin** uncertainty
 - KF/EKF with Nearest/Strongest Neighbor Data Association
 - Probabilistic Data Association filter (PDAF)

- Single maneuvering target, **origin** uncertainty
 - Multiple model-PDAF
Tracking Algorithms

- **Multiple non-maneuvering targets**
 - Joint Probabilistic Data Association filter (JPDAF)
 - Multiple Hypothesis Tracker (MHT)

- **Multiple maneuvering targets**
 - MM-variants of MHT (e.g. IMM-MHT)

- Other Bayesian filtering schemes such as **Particle filters** have also been successfully applied to the tracking problem
A continuous-time **Linear Dynamic System (LDS)** can be described by a state equation of the form

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) + \xi(t) \]

Called *process* or *plant model*

The system can be **observed remotely** through

\[z(t) = H(t)x(t) + \epsilon(t) \]

Called *observation* or *measurement model*

This is the **State-Space Representation**, omnipresent in physics, control or estimation theory

Provides the **mathematical formulation** for our estimation task
Linear Dynamic System (LDS)

- **Stochastic** process governed by
 \[
 \dot{x}(t) = A(t)x(t) + B(t)u(t) + \xi(t)
 \]
 - \(x \in \mathbb{R}^{nx} \) is the state vector
 - \(u \in \mathbb{R}^{nu} \) is the input vector
 - \(\xi \in \mathbb{R}^{nx} \) is the process noise
 - \(A \in \mathbb{R}^{nx} \times \mathbb{R}^{nx} \) is the system matrix
 - \(B \in \mathbb{R}^{nx} \times \mathbb{R}^{nu} \) is the input gain

- The system can be **observed** through
 \[
 z(t) = H(t)x(t) + \epsilon(t)
 \]
 - \(z \in \mathbb{R}^{nz} \) is the measurement vector
 - \(\epsilon \in \mathbb{R}^{nz} \) is the measurement noise
 - \(H \in \mathbb{R}^{nz} \times \mathbb{R}^{nx} \) is the measurement matrix
Discrete-Time LDS

- Continuous model are difficult to realize
 - Algorithms work at discrete time steps
 - Measurements are acquired with certain rates

- In practice, **discrete models** are employed

- **Discrete-time LDS** are governed by
 \[
 x(k + 1) = F(k)x(k) + G(k)u(k) + \xi(k)
 \]
 - \(F \in \mathbb{R}^{n_x \times n_x} \) is the **state transition matrix**
 - \(G \in \mathbb{R}^{n_x \times n_u} \) is the **discrete-time input gain**

- Same observation function of continuous models
Discrete-Time LDS

- Continuous model are difficult to realize
 - Algorithms work at discrete time steps
 - Measurements are acquired with certain rates

- In practice, **discrete models** are employed

- **Discrete-time LDS** are governed by

\[
x(k + 1) = F(k)x(k) + G(k)u(k) + \xi(k)
\]

- \(F \in \mathbb{R}^{nx} \times \mathbb{R}^{nx}\) is the **state transition matrix**
- \(G \in \mathbb{R}^{nx} \times \mathbb{R}^{nu}\) is the **discrete-time input gain**

- Same observation function of continuous models

In target tracking, the input is unknown!
LDS Example – Throwing ball

- We want to throw a ball and **compute its trajectory**
- This can be **easily done with a LDS**
- No uncertainties, no tracking, just physics
- The ball’s **state** shall be represented as
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} \end{bmatrix}^T \]
- We ignore winds but consider the **gravity force** \(g \)
 \[u = -g \]
- No floor constraints
- We **observe** the ball with a noise-free position sensor
 \[z = \begin{bmatrix} x & y \end{bmatrix}^T \]
LDS Example – Throwing ball

- Throwing a ball from \(s \) with initial velocity \(v \)
- Consider only the gravity force, \(g \), of the ball

- State vector
 \[
 x = \begin{bmatrix} x & y & \dot{x} & \dot{y} \end{bmatrix}^T
 \]

- Initial state
 \[
 x_0 = \begin{bmatrix} sx & sy & vx & vy \end{bmatrix}^T
 \]

- Input vector (scalar)
 \(u = -g \)

- Measurement vector
 \[
 z = \begin{bmatrix} x & y \end{bmatrix}^T
 \]

- Process matrices
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
 \[
 G = \begin{bmatrix}
 0 & \frac{T^2}{2} & 0 & T
 \end{bmatrix}^T
 \]

- Measurement matrix
 \[
 H = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0
 \end{bmatrix}
 \]
LDS Example – Throwing ball

- Initial State
 \[x_0 = \begin{bmatrix} 0 & 0 & 9 & 30 \end{bmatrix}^T \]

- No noise
LDS Example – Throwing ball

![Graph showing system evolution and observations](image-url)
LDS Example – Throwing ball
LDS Example – Throwing ball
LDS Example – Throwing ball

System evolution Observations
LDS Example – Throwing ball
LDS Example – Throwing ball
LDS Example – Throwing ball

![Graph showing system evolution and observations for a throwing ball example.](image-url)
LDS Example – Throwing ball

- **Initial State**

 \[x_0 = \begin{bmatrix} 0 & 0 & 9 & 30 \end{bmatrix}^T \]

- It’s **windy** and our sensor is **imperfect**: let’s add Gaussian process and observation noise
LDS Example – Throwing ball

System evolution Observations
LDS Example – Throwing ball

![Graph showing system evolution and observations](image)
LDS Example – Throwing ball

System evolution Observations
LDS Example – Throwing ball
LDS Example – Throwing ball

![Graph showing system evolution and observations for throwing a ball.](image)
LDS Example – Throwing ball

![Graph showing system evolution and observations](image)

- **System evolution**
- **Observations**
LDS Example – Throwing ball
LDS Example – Throwing ball
LDS Example – Throwing ball
Kalman Filter (KF)

- The Kalman filter is the **workhorse of tracking**

- Under linear Gaussian assumptions, the KF is the **optimal** minimum mean squared error (MMSE) estimator. It is still the **optimal linear** MMSE estimator if these conditions are not met

- An “**optimal**” estimator is an algorithm that processes observations to yield a state estimate that **minimizes** a certain error criterion (e.g. RMS, MSE)

- It is basically a (recursive) **weighted sum** of the prediction and observation. The weights are given by the **process** and the **measurement covariances**

- See literature for detailed tutorials
Kalman Filter (KF)

- Consider a discrete time LDS with **dynamic model**
 \[x(k + 1) = F(k)x(k) + \xi(k) \]
 where \(\xi(k) \) is the process noise (no input assumed)
 \[\xi(k) \sim \mathcal{N}(0, Q(k)) \]

- The **measurement model** is
 \[z(k) = H(k)x(k) + \epsilon(k) \]
 where \(\epsilon(k) \) is the measurement noise
 \[\epsilon(k) \sim \mathcal{N}(0, R(k)) \]

- The **initial state** is generally unknown and modeled as a Gaussian random variable
 \[\hat{x}(0|0) = x_0 \quad \text{State estimate} \]
 \[\hat{P}(0|0) = P_0 \quad \text{Covariance estimate} \]
Kalman Filter

- **State Prediction**
 \[
 \hat{x}(k + 1|k) = F(k)\hat{x}(k|k)
 \]
 \[
 \hat{P}(k + 1|k) = F(k)\hat{P}(k|k)F^T(k) + Q(k)
 \]

- **Measurement Prediction**
 \[
 \hat{z}(k) = H(k)\hat{x}(k + 1|k)
 \]
 \[
 \hat{S}(k) = H(k)\hat{P}(k + 1|k)H^T(k) + R(k)
 \]

- **Update**
 \[
 K(k) = \hat{P}(k + 1|k)H^T(k)\hat{S}(k)^{-1}
 \]
 \[
 \hat{x}(k + 1|k + 1) = \hat{x}(k + 1|k) + K(k)\nu(k)
 \]
 \[
 \hat{P}(k + 1|k + 1) = (I - K(k)H(k))\hat{P}(k + 1|k)
 \]
EKF: Error Propagation

- **Error Propagation** is everywhere in Kalman filtering
 - From the uncertain previous state to the next state over the system dynamics
 \[\hat{P}(k+1|k) = F(k) \hat{P}(k|k) F^T(k) + E(k) U(k) E(k)^T + G(k) A(k) G(k)^T \]
 - From the uncertain inputs to the state over the input gain relationship
 \[\hat{P}(k+1|k) = F(k) \hat{P}(k|k) F^T(k) + E(k) U(k) E(k)^T + G(k) A(k) G(k)^T \]
 - From the uncertain predicted state to the predicted measurements over the measurement model
 \[\hat{S}(k+1) = H(k) \hat{P}(k+1|k) H^T(k) + R(k) \]
Error Propagation Law

Given

- A linear system $Y = F_X \cdot X$
- X, Y assumed to be Gaussian
- Input covariance matrix C_X
- System matrix F_X

the Error Propagation Law

\[
C_Y = F_X C_X F_X^T
\]

computes the output covariance matrix C_Y
Error Propagation Law

- Derivation in Matrix Notation

Blackboard...
Error Propagation Law

- Derivation in Matrix Notation

\[
\begin{align*}
\mu_x &= E(x) \\
&= E(Au + b) \\
&= AE(u) + b \\
&= A\mu_u + b
\end{align*}
\]

\[
\begin{align*}
\Sigma_x &= E((x - E(x))(x - E(x))^T) \\
&= E((Au + b - AE(u) - b)(Au + b - AE(u) - b)^T) \\
&= E((A(u - E(u)))(A(u - E(u)))^T) \\
&= E((A(u - E(u)))(u - E(u))^T A^T)) \\
&= AE((u - E(u))(u - E(u))^T)A^T \\
&= A\Sigma_u A^T
\end{align*}
\]
Kalman Filter Cycle

1. State prediction
2. Measurement prediction
3. Data association
4. Target detection
5. Update

System model

Sensors
Kalman Filter Cycle

- Raw sensory data
- Targets
- Innovation from matched landmarks
- Predicted state
- Predicted measurements in sensor coordinates
- Posterior state

- Motion model
- Observation model

- System model

- State prediction
- Measurement prediction
- Data association
- Target detection

- Sensors

Flowchart representation of the Kalman Filter Cycle.
KF Cycle 1/4: State prediction

- **State prediction**

\[
\hat{x}(k + 1|k) = F(k)\hat{x}(k|k) \\
\hat{P}(k + 1|k) = F(k)\hat{P}(k|k)F^T(k) + Q(k)
\]

- In target tracking, **no a priori knowledge** of the dynamic equation is generally available

- Instead, different **motion models** (MM) are used
 - Brownian MM
 - Constant velocity MM
 - Constant acceleration MM
 - Constant turn MM
 - Specialized models (problem-related, e.g. ship models)
Motion Models: Brownian

No-motion assumption
- Useful to describe stop-and-go motion behavior

- State representation
 \[x = \begin{bmatrix} x & y \end{bmatrix}^T \]

- Initial state
 \[x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T \]

- Transition matrix
 \[F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
Motion Models: Brownian

No-motion assumption
- Useful to describe stop-and-go motion behavior

State representation
- \[x = \begin{bmatrix} x \\ y \end{bmatrix}^T \]

Initial state
- \[x_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^T \]

Transition matrix
- \[F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Ball example

State prediction:
- Uncertainty grows
Motion Models: Brownian

No-motion assumption
- Useful to describe stop-and-go motion behavior

- State representation
 \[x = \begin{bmatrix} x & y \end{bmatrix}^T \]

- Initial state
 \[x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T \]

- Transition matrix
 \[F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Ball example

State prediction:
- Uncertainty grows
Motion Models: Brownian

No-motion assumption
- Useful to describe stop-and-go motion behavior

- State representation
 \[x = \begin{bmatrix} x & y \end{bmatrix}^T \]

- Initial state
 \[x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T \]

- Transition matrix
 \[F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Ball example
State prediction:
- Uncertainty grows
Motion Models: Brownian

No-motion assumption
- Useful to describe stop-and-go motion behavior

- State representation
 \[x = \begin{bmatrix} x & y \end{bmatrix}^T \]

- Initial state
 \[x_0 = \begin{bmatrix} 0 & 0 \end{bmatrix}^T \]

- Transition matrix
 \[F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Ball example

State prediction:
- Uncertainty grows
MMs: Constant Velocity

Constant target velocity assumption
- Useful to model smooth target motion

- State representation
 \[
 x = \begin{bmatrix}
 x & y & \dot{x} & \dot{y}
 \end{bmatrix}^T
 \]

- Initial state
 \[
 x = \begin{bmatrix}
 0 & 0 & 9 & 30
 \end{bmatrix}^T
 \]

- Transition matrix
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
MMs: Constant Velocity

Constant target velocity assumption
- Useful to model smooth target motion

- State representation
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} \end{bmatrix}^T \]

- Initial state
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 \end{bmatrix}^T \]

- Transition matrix
 \[F = \begin{bmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \]

Ball example

State prediction:
- Linear target motion
- Uncertainty grows
MMs: Constant Velocity

Constant target velocity assumption
- Useful to model smooth target motion

- **State representation**
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} \end{bmatrix}^T \]

- **Initial state**
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 \end{bmatrix}^T \]

- **Transition matrix**
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example

- **State prediction:**
 - **Linear target motion**
 - **Uncertainty grows**
MMs: Constant Velocity

Constant target velocity assumption
- Useful to model smooth target motion

- **State representation**

 \[
 x = [\begin{bmatrix} x & \dot{x} \\ y & \dot{y} \end{bmatrix}]^T
 \]

- **Initial state**

 \[
 x = [\begin{bmatrix} 0 & 0 & 9 & 30 \end{bmatrix}]^T
 \]

- **Transition matrix**

 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example

State prediction:
- **Linear target motion**
- **Uncertainty grows**
MMs: Constant Velocity

Constant target velocity assumption
- Useful to model smooth target motion

- **State representation**
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} \end{bmatrix}^T \]

- **Initial state**
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 \end{bmatrix}^T \]

- **Transition matrix**
 \[F = \begin{bmatrix}
 1 & 0 & T & 0 \\
 0 & 1 & 0 & T \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix} \]

Ball example

- State prediction:
 - Linear target motion
 - Uncertainty grows
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- **State representation**
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- **Initial state**
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 & 0 & -g \end{bmatrix}^T \]

- **Transition matrix**
 \[F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \]
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- State representation
 \[x = \begin{bmatrix} x & y & \dot{x} & y & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- Initial state
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 & 0 & -g \end{bmatrix}^T \]

- Transition matrix
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]

Ball example

State prediction:
- Non-linear motion
- Uncertainty grows
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- **State representation**
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- **Initial state**
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 & 0 & -g \end{bmatrix}^T \]

- **Transition matrix**
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example

State prediction:
- **Non-linear motion**
- **Uncertainty grows**
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- **State representation**
 \[
 x = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y} \end{bmatrix}^T
 \]

- **Initial state**
 \[
 x = \begin{bmatrix} 0 & 0 & 9 & 30 & 0 & -g \end{bmatrix}^T
 \]

- **Transition matrix**
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example
- **State prediction:**
 - **Non-linear motion**
 - **Uncertainty grows**
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- State representation
 \[x = \begin{bmatrix} x & y & \dot{x} & y & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- Initial state
 \[x = \begin{bmatrix} 0 & 0 & 9 & 30 & 0 & -g \end{bmatrix}^T \]

- Transition matrix
 \[F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} \]

Ball example

State prediction:
- Non-linear motion
- Uncertainty grows
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- State representation
 \[x = \begin{bmatrix} x & y & \dot{x} & y & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- Initial state
 \[x = \begin{bmatrix} 0 & 0 & 30 & 30 & -20 & -12 \end{bmatrix}^T \]

- Transition matrix
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]
MMs: Constant Acceleration

Constant target acceleration assumed
- Useful to model target motion that is smooth in position and velocity changes

- **State representation**
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- **Initial state**
 \[x = \begin{bmatrix} 0 & 0 & 30 & 30 & -20 & -12 \end{bmatrix}^T \]

- **Transition matrix**
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example
- **State prediction:**
 - Non-linear motion
 - Uncertainty grows
MMs: Constant Acceleration

Constant target acceleration assumed

- Useful to model target motion that is smooth in position and velocity changes

- State representation
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- Initial state
 \[x = \begin{bmatrix} 0 & 0 & 30 & 30 & -20 & -12 \end{bmatrix}^T \]

- Transition matrix
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example

State prediction:
- **Non-linear motion**
- Uncertainty grows
MMs: Constant Acceleration

Constant target acceleration assumed

- Useful to model target motion that is smooth in position and velocity changes

- State representation

 \[
 x = \begin{bmatrix}
 x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y}
 \end{bmatrix}^T
 \]

- Initial state

 \[
 x = \begin{bmatrix}
 0 & 0 & 30 & 30 & -20 & -12
 \end{bmatrix}^T
 \]

- Transition matrix

 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example

State prediction:

- Non-linear motion
- Uncertainty grows
MMs: Constant Acceleration

Constant target acceleration assumed

- Useful to model target motion that is smooth in position and velocity changes

- State representation
 \[x = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \ddot{x} & \ddot{y} \end{bmatrix}^T \]

- Initial state
 \[x = \begin{bmatrix} 0 & 0 & 30 & 30 & -20 & -12 \end{bmatrix}^T \]

- Transition matrix
 \[
 F = \begin{bmatrix}
 1 & 0 & T & 0 & \frac{T^2}{2} & 0 \\
 0 & 1 & 0 & T & 0 & \frac{T^2}{2} \\
 0 & 0 & 1 & 0 & T & 0 \\
 0 & 0 & 0 & 1 & 0 & T \\
 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1
 \end{bmatrix}
 \]

Ball example

State prediction:
- **Non-linear motion**
- Uncertainty grows
KF Cycle 2/4: Meas. Prediction

- **Measurement prediction**

 \[\tilde{z}(k) = H(k)\hat{x}(k + 1|k) \]

 \[\tilde{S}(k) = H(k)\hat{P}(k + 1|k)H^T(k) + R(k) \]

- **Observation**

 Typically, only the target **position** is observed. The measurement matrix is then

 \[z = \begin{bmatrix} x & y \end{bmatrix}^T \]

 \[H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \]

 Note: One can also observe

 - Velocity (Doppler radar)
 - Acceleration (accelerometers)
KF Cycle 3/4: Data Association

- Once measurements are predicted and observed, we have to **associate them with each other**
- This is resolving the **origin uncertainty** of observations
- Data association is typically done in the **sensor reference frame**

- Data association can be a **hard problem** and many advanced techniques exist

More on this later in this course
KF Cycle 3/4: Data Association

Step 1: Compute the pairing difference and its associated uncertainty

- The difference between predicted measurement and observation is called innovation
 \[\nu_{ij}(k) = z_i(k) - \tilde{z}_j(k) \]

- The associated covariance estimate is called the innovation covariance
 \[\hat{S}_{ij}(k) = H(k)\hat{P}_j(k + 1|k)H^T(k) + R_i(k) \]

- The prediction-observation pair is often called pairing
KF Cycle 3/4: Data Association

Step 2: Check if the pairing is statistically compatible

- Compute the Mahalanobis distance

 \[d_{ij}^2 = \nu_{ij}(k)^T \hat{S}_{ij}(k)^{-1} \nu_{ij}(k) \]

- Compare it against the proper threshold from an cumulative \(\chi^2 \) ("chi square") distribution

 \[d_{ij} \leq \chi^2_{n,\alpha} \]

 Significance level

 Degrees of freedom

Compatibility on level \(\alpha \) is finally given if this is true
KF Cycle 3/4: Data Association

- Constant velocity model
- Process noise
 \[Q = \begin{bmatrix} 5.0 & 0 & 0 & 0 \\ 0 & 5.0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0.5 \end{bmatrix} \]
- Measurement noise
 \[R = \begin{bmatrix} 10.0 & 0 \\ 0 & 10.0 \end{bmatrix} \]
- No false alarm

\[\implies \text{No problem} \]
KF Cycle 3/4: Data Association

- Constant velocity model
- Process noise
 \[
 Q = \begin{bmatrix}
 5.0 & 0 & 0 & 0 \\
 0 & 5.0 & 0 & 0 \\
 0 & 0 & 0.5 & 0 \\
 0 & 0 & 0 & 0.5 \\
 \end{bmatrix}
 \]
- Measurement noise
 \[
 R = \begin{bmatrix}
 10.0 & 0 \\
 0 & 10.0 \\
 \end{bmatrix}
 \]
- Uniform false alarm
 \[x \sim \mathcal{U}(0,60), \quad y \sim \mathcal{U}(0,60)\]
- False alarm rate = 3

\(\rightarrow\) **Ambiguity**: several observations in the validation gate
KF Cycle 3/4: Data Association

- Constant velocity model
- Process noise
 \[
 Q = \begin{bmatrix}
 5.0 & 0 & 0 & 0 \\
 0 & 5.0 & 0 & 0 \\
 0 & 0 & 0.5 & 0 \\
 0 & 0 & 0 & 0.5 \\
 \end{bmatrix}
 \]
- Measurement noise
 \[
 R = \begin{bmatrix}
 50.0 & 0 \\
 0 & 50.0 \\
 \end{bmatrix}
 \]
- Uniform false alarm
 \[
 x \sim \mathcal{U}(0,60), \quad y \sim \mathcal{U}(0,60)
 \]
- False alarm rate = 3

→ **Wrong association** as closest observation is false alarm
KF Cycle 4/4: Update

- Computation of the **Kalman gain**

\[K(k) = \hat{P}(k + 1|k)H^T(k)\hat{S}(k)^{-1} \]

- State and state covariance **update**

\[
\hat{x}(k + 1|k + 1) = \hat{x}(k + 1|k) + K(k)\nu(k)
\]

\[
\hat{P}(k + 1|k + 1) = (I - K(k)H(k))\hat{P}(k + 1|k)
\]
KF Cycle 4/4: Update

It's a weighted mean!
Kalman Filter Cycle

- **Raw sensory data**
- **Targets**
- **Innovation from matched landmarks**
- **Posterior state**
- **State prediction**
 - Predicted state
 - Predicted measurements in sensor coordinates
- **Update**
- **Data association**
 - Innovation from matched landmarks
 - Targets
 - Raw sensory data
- **Measurement prediction**
- **System model**
- **Motion model**
- **Observation model**

Flowchart Diagram:
- **State prediction** to **Update**
- **Measurement prediction** to **Data association**
- **Data association** to **Target detection**
- **Target detection** to **Sensors**
- **Sensors** to **Raw sensory data**
- **Raw sensory data** to **System model**
- **Motion model** to **System model**
- **Observation model** to **System model**

Nodes:
- State prediction
- Update
- Data association
- Target detection
- Senses
- System model
- Motion model
- Observation model
Kalman Filter: Limitations

- **Non-linear motion** models and/or **non-linear measurement** models
 - Extended Kalman filter

- **Unknown inputs** into the dynamic process model (values and modes)
 - Enlarged process noise (simple but there are implications)
 - **Multiple model** approaches (accounts for mode changes)

- **Uncertain origin** of measurements
 - Data Association

- How **many** targets are there?
 - Track formation and deletion techniques
 - Multiple Hypothesis Tracker (MHT)
Extended Kalman Filter

- The **Extended Kalman filter** deals with **non-linear process** and **non-linear measurement models**

- Consider a discrete time LDS with **dynamic model**
 \[x(k+1) = f(k, x(k)) + \xi(k) \]
 where \(\xi(k) \) is the process noise (no input assumed)

- The **measurement model** is
 \[z(k) = h(k, x(k)) + \epsilon(k) \]
 where \(\epsilon(k) \) is the measurement noise

- The same KF-assumptions for the initial state
Kalman Filter

- State Prediction

\[\hat{x}(k + 1|k) = F(k)\hat{x}(k|k) \]
\[\hat{P}(k + 1|k) = F(k)\hat{P}(k|k)F^T(k) + Q(k) \]

- Measurement Prediction

\[\tilde{z}(k) = H(k)\hat{x}(k + 1|k) \]
\[\tilde{S}(k) = H(k)\hat{P}(k + 1|k)H^T(k) + R(k) \]

- Update

\[K(k) = \hat{P}(k + 1|k)H^T(k)\tilde{S}(k)^{-1} \]
\[\hat{x}(k + 1|k + 1) = \hat{x}(k + 1|k) + K(k)\nu(k) \]
\[\hat{P}(k + 1|k + 1) = (I - K(k)H(k))\hat{P}(k + 1|k) \]
Extended Kalman Filter

- **State Prediction**
 \[
 \hat{x}(k + 1|k) = f(k, \hat{x}(k|k)) \quad \text{(Jacobian)}
 \]
 \[
 \hat{P}(k + 1|k) = F(k)\hat{P}(k|k)F^T(k) + Q(k)
 \]

- **Measurement Prediction**
 \[
 \hat{z}(k) = h(k, \hat{x}(k + 1|k)) \quad \text{(Jacobian)}
 \]
 \[
 \hat{S}(k) = H(k)\hat{P}(k + 1|k)H^T(k) + R(k)
 \]

- **Update**
 \[
 K(k) = \hat{P}(k + 1|k)H^T(k)\hat{S}(k)^{-1}
 \]
 \[
 \hat{x}(k + 1|k + 1) = \hat{x}(k + 1|k) + K(k)v(k)
 \]
 \[
 \hat{P}(k + 1|k + 1) = (I - K(k)H(k))\hat{P}(k + 1|k)
 \]
First-Order Error Propagation

Given

- A non-linear system $Y = f(X)$
 - X, Y assumed to be Gaussian
- Input covariance matrix C_X
- Jacobian matrix F_X

the Error Propagation Law

$$C_Y = F_X C_X F_X^T$$

computes the output covariance matrix C_Y
First-Order Error Propagation

- Approximating $f(X)$ by a **first-order** Taylor series expansion about the point $X = \mu_X$

$$Y \approx f(\mu_X) + \left. \frac{\partial f}{\partial X} \right|_{X = \mu_X} (X - \mu_X)$$
Jacobian Matrix

- It’s a **non-square matrix** \(n \times m \) in general.
- Suppose you have a vector-valued function \(f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} \).
- Let the **gradient operator** be the vector of (first-order) partial derivatives
 \[
 \nabla_x = \begin{bmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \cdots & \frac{\partial}{\partial x_n} \end{bmatrix}^T
 \]
- Then, the **Jacobian matrix** is defined as
 \[
 F_x = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} \cdot \begin{bmatrix} \frac{\partial}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_2}{\partial x_n} \end{bmatrix}
 \]
Jacobian Matrix

- It’s the orientation of the tangent plane to the vector-valued function at a given point

- Generalizes the gradient of a scalar valued function
Track Management

Formation
- When to create a new track?
- What is the initial state?

Heuristics:
- Greedy initialization
 - Every observation not associated is a new track
 - Initialize only position
- Lazy initialization
 - Accumulate several unassociated observations
 - Initialize position & velocity

Occlusion/deletion
- When to delete a track?
- Is it just occluded?

Heuristics:
- Greedy deletion
 - Delete if no observation can be associated
 - No occlusion handling
- Lazy deletion
 - Delete if no observation can be associated for several time steps
 - Implicit occlusion handling
Example: Tracking the Ball

- Unlike the previous experiment in which we had a model of the ball’s trajectory and just observed it, we now want to track the ball.

- Comparison: small versus large process noise Q and the effect of the three different motion models.

- For simplicity, we perform no gaiting (i.e. no Mahalanobis test) but accept the pairing every time.
Ball Tracking: Brownian

Small process noise

Large process noise

Ground truth Observations State estimate
Ball Tracking: Brownian
Ball Tracking: Brownian
Ball Tracking: Brownian

Graphs showing ground truth, observations, and state estimate.
Ball Tracking: Brownian
Ball Tracking: Brownian
Ball Tracking: Brownian

- **Ground truth**
- **Observations**
- **State estimate**
Ball Tracking: Brownian

Ground truth Observations State estimate
Ball Tracking: Brownian
Ball Tracking: Brownian
Ball Tracking: Brownian
Ball Tracking: Brownian

- Ground truth
- Observations
- State estimate
Ball Tracking: Brownian
Ball Tracking: Brownian
Ball Tracking: Brownian

large difference!
Ball Tracking: Constant Velocity

Small process noise

Large process noise

- Ground truth
- Observations
- State estimate
Ball Tracking: Constant Velocity

- **Ground truth**
- **Observations**
- **State estimate**
Ball Tracking: Constant Velocity
Ball Tracking: Constant Velocity

- Ground truth
- Observations
- State estimate
Ball Tracking: Constant Velocity

Ground truth Observations State estimate
Ball Tracking: Constant Velocity

Ground truth Observations State estimate
Ball Tracking: Constant Velocity

Ground truth Observations State estimate
Ball Tracking: Constant Velocity

- Ground truth
- Observations
- State estimate
Ball Tracking: Constant Velocity

- Ground truth
- Observations
- State estimate
Ball Tracking: Constant Velocity
Ball Tracking: Constant Velocity

Ground truth Observations State estimate
Ball Tracking: Constant Velocity

Ground truth Observations State estimate
Ball Tracking: Constant Velocity

![Graphs showing ball tracking with ground truth, observations, and state estimate](image)

- **Ground truth**
- **Observations**
- **State estimate**
Ball Tracking: Constant Velocity

Graphs showing the comparison between ground truth, observations, and state estimate for ball tracking with constant velocity.
Ball Tracking: Constant Velocity

![Graph showing ground truth, observations, and state estimate with a smaller difference between the curves.](image_url)
Ball Tracking: Const. Acceleration

Small process noise

Large process noise

Ground truth Observations State estimate
Ball Tracking: Const. Acceleration

Graphs showing the comparison between ground truth and observations with state estimates.
Ball Tracking: Const. Acceleration

[Diagrams showing ground truth, observations, and state estimate]
Ball Tracking: Const. Acceleration

Ground truth Observations State estimate
Ball Tracking: Const. Acceleration

- Ground truth
- Observations
- State estimate
Ball Tracking: Const. Acceleration

- Ground truth
- Observations
- State estimate
Ball Tracking: Const. Acceleration

- Ground truth
- Observations
- State estimate
Ball Tracking: Const. Acceleration

- Ground truth
- Observations
- State estimate
Ball Tracking: Const. Acceleration

Ground truth Observations State estimate
Ball Tracking: Const. Acceleration

Graphs showing the comparison between Ground truth, Observations, and State estimate.
Ball Tracking: Const. Acceleration

- **Ground truth**
- **Observations**
- **State estimate**
Ball Tracking: Const. Acceleration

- Ground truth
- Observations
- State estimate
Ball Tracking: Const. Acceleration

- **Ground truth**
- **Observations**
- **State estimate**
Ball Tracking: Const. Acceleration

- Ground truth
- Observations
- State estimate
Ball Tracking: Const. Acceleration

very small difference!
Summary

- Tracking is maintaining the **state** and **identity** of a moving object over time despite **detection errors** (false negatives, false alarms), **occlusions**, and the presence of **other objects**.

- **Linear Dynamic Systems** (a.k.a. the state-space representation) provide the mathematical framework for estimation.

- For **tracking**, there is **no control input** u in the process model. Therefore good motion models are key.

- The **Kalman filter** is a recursive Bayes filter that follows the typical **predict-update cycle**.
Summary

- The **Extended Kalman filter** (EKF) is for cases of non-linear process or measurement models. It computes the Jacobians, **first-order linearizations** of the models, and has the same expressions than the KF.

- A large process noise covariance can partly **compensate a poor motion model** for maneuvering targets.

- But: large process noise covariances cause the validation gates to be large which in turn increases the **level of ambiguity for data association**. This is potentially problematic in case of multiple targets.