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Data Association 

  Problem types 
  Track creation, maintenance, and deletion 
  Single or multiple targets and sensors 
  Imperfect target detection 
  False alarms 
  Target occlusions 

  Approaches 
  Bayesian: compute a full (or approx.) distribution in DA 

space from priors, posterior beliefs, and observations 
  Non-Bayesian: compute a maximum likelihood estimate 

from the possible set of DA solutions 

“Data association is the process of associating   
uncertain measurements to known tracks.”         



Data Association 
Overall procedure: 

  Make observations (= measurements). 
 Measurements can be raw data (e.g. processed radar 
signals) or the output of some target detector (e.g. 
people detector) 

  Predict the measurements from the predicted tracks. 
 This yields an area in sensor space where to expect an 
observation. The area is called validation gate and is 
used to narrow the search 

  Check if a measurement lies in the gate. 
 If yes, then it is a valid candidate for a pairing/match 



Data Association 
What makes this a difficult problem 

  Multiple targets 

  False alarms 

  Detection 
uncertainty 
(occlusions, sensor 
failures, …) 

  Ambiguities 
(several measure- 
ments in the gate) 



Measurement Prediction 
  Measurement and measurement cov. prediction 

  This is typically a frame transformation into sensor space 

  If only the position of the target is observed 
(typical case), the measurement matrix is 

  Note: One can also observe 
  Velocity (Doppler radar) 
  Acceleration (accelerometers) 



Validation Gate  
  Assume that measurements are distributed 

according to a Gaussian, centered at the 
measurement prediction       with covariance 

 This is the measurement likelihood model 

  Let further 

 be the Mahalanobis distance between    and     



Validation Gate  
  Then, the measurements will be in the area 

 
 

 with a probability defined by the gate threshold 
(omitting indices k) 

  This area is called validation gate 

  The threshold is obtained from the inverse     
cumulative distribution at a significance level 

      = “chi square” 



Validation Gate  
  The shape of the validation gate is a hyper-ellipsoid 
  This follows from setting 

 

 leading to 

 

 which describes a conic section in matrix form 

  The gate is a iso-probability contour obtained 
when intersecting a Gaussian with a hyper-plane. 



Validation Gate 
Why a     distribution? 

  Let      be a set of k  i.i.d. standard normally 
distributed random variables,                    . 
 Then, the variable Q 

  
 follows a     distribution with k “degrees of freedom” 

  We will now show that the Mahalanobis distance is a 
sum of squared standard normally distributed RVs. 



Validation Gate in 1D 
  Assume 1D measurements and 
  The Mahalanobis distance is then  

  By changing variables,                 , we have               

  Thus,            and is     distributed with 1 degree of 
freedom 



Validation Gate in ND 
  Assume ND measurements and 
  The Mahalanobis distance is then 

  By changing variables,                                 , we 
have                 and therefore 

 which is     distributed with k degrees of freedom. 

     is obtained from a Cholesky decomposition 



Validation Gate 
Where does the threshold     come from? 
     , often denoted       , is taken from the inverse     

cumulative distribution at a level     and k d.o.f.s 
  The values are typically given in tables, e.g. in most 

statistics books (or by the Matlab function chi2inv)  
  Given the level    , we can now understand the 

interpretation of the validation gate: 

 The validation gate is a region of acceptance 
such that                  of true measurements 
are rejected 

 
  Typical values for     are 0.95 or 0.99 



Validation Gate 
Euclidian distance 
 
Takes into account: 
 Position 
  Uncertainty 
  Correlations 
 
 
 
 It seems that i-a 

and j-b belong 
together Observations         Predictions 



Validation Gate 
Mahalanobis distance 
with diagonal covariance 
matrices 
 
Takes into account: 
 Position 
 Uncertainty 
  Correlations 

 
 Now, i-b is “closer” 

 than j-b 
 Observations         Predictions 



Validation Gate 
Mahalanobis distance 
 
Takes into account: 
 Position 
 Uncertainty 
 Correlations 
 
 
 
 It’s actually i-b and j-a 

that belong together! 
 Observations         Predictions 



False Alarms 
  False alarms are false positives 
  They can come from sensor imperfections, 

detector failures, or clutter 
  Clutter is “unwanted echoes”, 

e.g. atmospheric turbulences 
  Thus, the questions: 

 What’s inside the gate? 
  A measurement or 
  A false alarm? 

 How to model false alarms? 
  Uniform over sensor space 
  Independent across time 

 



False Alarm Model 
  Assume (temporarily) that the sensor field of view V 

is discretized into N discrete cells, 
  In each cell, false alarms occur with probability 
  Assume independence across cells 
  The occurrence of false alarms is a Bernoulli process 

(flipping an unfair coin) with probability 
  Then, the number of false alarms       follows a 

Binomial distribution 

 with expected value 



False Alarm Model 
  Let the spatial density    be the number of false 

alarms over space 

  Let now            , that is, we reduce the cell size until 
the continuous case. Then the Binomial becomes a 
Poisson distribution with 

  The measurement likelihood of 
false alarms is assumed to be uni- 
form,   

[occurrences per m2] 



Single Target Data Association 
Assumptions 
  A single target to track 
  Track already initialized 
  Detection probability < 1 
  False alarm probability > 0 

Data Association approaches 

Non-Bayesian: no prior association probabilites 
  Nearest neighbor Standard filter (NNSF) 
  Track splitting filter 
Bayesian: computes association probabilites 
  Probabilistic Data Association Filter (PDAF) 
 



Single Target DA: NNSF  
Nearest Neighbor Standard Filter (NNSF) 

1. Compute Mahalanobis distance to all measurements 
2. Accept the closest measurement 
3. Update the track as if it were the correct one 

Problem: with some probability the selected measurement 
is not the correct one. An incorrect association can lead to 
overconfident covariances, filter divergence and track 
loss. Note: covariances will collapse in any case. 

  Conservative NNSF variant: 
Do not associate in case of ambiguities 

  Other variant: Strongest Neighbor Standard filter: 
Used, e.g., with sonar sensors 



Probabilistic Data Association filter (PDAF) 

  Computes the probability of track-to-
measurement associations, thus a Bayesian data 
association technique 

  Opposed e.g. to the NNSF that uses a ML criterion 
based on the minimum Mahalanobis distance 

  Idea: Instead of taking a hard decision, update the 
track with a weighted average of all validated 
measurements 

  The weights being the individual association 
probabilities 

Single Target DA: PDAF  



Probabilistic Data Association filter 

  Integrates all measurements in the validation gate 
  Conditioning the update on the association events 

 
                  is the 

association probability 

  Assumption: At most one of the 
validated measurements comes from 
the target. All others are independently 
and uniformly distributed 
 

 
 

  

Single Target DA: PDAF  



Single Target DA: PDAF  
  Association probability                   for a Poisson 

false alarm model is 

  Intuition: depends on the number of validated 
measurements m(k) versus the false alarms rate, the 
detection probability PD of the target, the probability 
PG that the target detection falls into the gate, and 
the individual innovations 

 
(Derivation skipped) 

 



Mixture Distributions 
To understand the PDAF state update expressions, 
we recall some basics: 

  Mixture distributions 
  A mixture pdf is a weighted sum of 

pdfs with the weights summing up to 1 
  Consider a Gaussian mixture 

 with events                               . Then 
 
 
 

 with the events being mutually exclusive and exhaustive 



Mixture Distributions 
  Conditional expectation 

  Moments of a mixture 
  Mean 

  Covariance 



Mixture Distributions 
  Moments of a mixture: Covariance 



Mixture Distributions 
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Mixture Distributions 
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Mixture Distributions 
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Mixture Distributions 
  Moments of a mixture: Covariance 



Mixture Distributions 
  Moments of a mixture: Covariance 



Mixture Distributions 
  Moments of a mixture: Spread of the means  

Note resemblence to the sample covariance matrix 

  Alternative expression 



Single Target DA: PDAF  
State update 

  With the combined innovation 

 
 summed over all m association events        . 

 
The events         are assumed to be exhaustive (their 
probabilities sums up to one) and mutually exclusive 
(they cannot occur at the same time) 

  



Covariance update 
 
 
 
 
 
 

For i = 0 (no correct measurement), we have 
 
 
while for i ≠ 0 (one of the zi‘s is the correct measurement) 

 

Single Target DA: PDAF  



Covariance update 

Therefore, with                                  we get 
 
 
 
The last term is obtained as follows. Starting from 
 
 
 
we substitute 

Single Target DA: PDAF  



Covariance update 

... and, over some intermediate steps, arrive at 
 
 
 
 
  This is the (weighted) spread of the innovations term 

  Error propagation from the measurement space into the 
state space across the Kalman gain 

  It is positive semidefinite (a sum of dyads a⋅aT with 
positive weighting) 

Single Target DA: PDAF  



Covariance update 

  With probability         none of the measurements is 
correct, the predicted covariance appears with this 
weighting ("no update") 

  With probability                the correct measurement is 
available and the posterior covariance appears with this 
weighting 

  Since it is unknown which if the measurements is 
correct, the term     increases the covariance to 
account for the origin uncertanty  

Single Target DA: PDAF  



Single Target DA: PDAF  
  All other calculations in the PDAF 

  State prediction 
  Covariance prediction 
  Innovation covariance 
  Kalman gain 

 are done as in the standard Kalman filter 

  The only difference is in the use of the combined 
innovation in the state update and the increased 
covariance of the updated state 



Single Target DA: PDAF  
  Example 

  Tracking in presence of 
false alarms and mis-
detections (PD < 1) 

  At k = 7 there is no 
target detection but a 
false alarm 

  The PDAF, accounting 
for the origin uncer-
tainty, has a large 
validation gate 

  The NNSF-tracker loses 
the target 



Single Target DA: Wrap Up 
  The NNSF takes a hard association decision 

  This hard decision is sometimes correct and 
sometimes wrong 

  The PDAF relies on a soft decision since it 
averages over all the association possibilities 
  This soft decision is never totally correct but never 

totally wrong 

  This is why the PDAF is a suboptimal strategy 
  To be precise: the PDAF is suboptimal since it 

approximates the conditional pdf of the target’s state at 
every stage as a Gaussian with moments matched to 
the mixture 



Multi-Target Data Association 
Assumptions 
  Multiple targets to track 
  Tracks already initialized 
  Detection probability PD < 1 
  False alarm probability PF > 0 

Data Association approaches 

  Non Bayesian: ML criteria 
  NNSF, Global NNSF 

  Bayesian: compute association probabilites 
  JPDAF, MHT, MCMC 



Multi-Target DA: NNSF 
Nearest Neighbor Standard Filter (NNSF) 

1.  Build the assignment matrix              with 

  Rectangular 

  Square 



Multi-Target DA: NNSF 
Nearest Neighbor Standard Filter (NNSF) 

1.  Build the assignment matrix              with 

2.  Iterate  
  Find the minimum cost assignment in A 
  Remove the row and column of that assignment 

3.  Check if assignment is in the validation regions 
  Unassociated tracks can be used for track deletion 
  Unassociated meas. can be used for track creation 

  Problem: Does generally not find the global minimum 
  Conservative variant: no association in case of ambiguities 



Multi-Target DA: Global NNSF 
1.  Build the assignment matrix             with 

2.  Solve the linear assignment problem 

 

  Hungarian method for square matrices 
  Munkres algorithm for rectangular matrices 

3.  Check if assignments are in the validation gate 
 
Performs DA jointly, finds global optimum. 



Multi-Target DA: Global NNSF 
Linear assignment problem 

  Is one of the most famous problems in linear 
programming and in combinatorial optimization 

  Used to find the best assignment of n differently 
qualified workers to n jobs 

  Also called "the personnel assignment problem", first 
solutions in the 1940s. 

  By today, many efficient methods exist. The 
Hungarian method, while not the most efficient one, 
is still a popular algorithm 

  Can also be solved for non-square problems by 
Munkres' algorithm 



Multi-Target DA: Global NNSF 
Linear assignment problem 

 Problem statement: 

 We are given an n x n cost matrix C = (cij), and we want to 
select n elements of C, so that there is exactly one 
element in each row and one in each column, 

 
 

 and the sum of the corresponding costs 

 
 

 is a minimum. 



Example: NNSF versus Global NNSF 
 
 
 
 

 
 
 
 

      Which is the best 
     assignment? 

 
 

Multi-Target DA: Global NNSF 

Observations         Predictions 



Example: NNSF versus Global NNSF 
 
 
 
 

 
 
 

      NNSF: 

      Greedy 

 
 

Multi-Target DA: Global NNSF 

Observations         Predictions 



Example: NNSF versus Global NNSF 
 
 
 
 

 
 
 

      NNSF: 

      Greedy 

 
 

Multi-Target DA: Global NNSF 

Observations         Predictions 



Example: NNSF versus Global NNSF 
 
 
 
 

        
 
 

      Global NNSF: 

      Globally optimal 

Multi-Target DA: Global NNSF 

Observations         Predictions 



Multi-Target DA: MHT 
  All DA methods considered so far are single-frame 
  Hard or soft decisions are taken after each step 
  In the presence of false alarms, misdetections, 

maneuvers and lengthy occlusion events, this is an 
error-prone strategy 

  We want to delay decisions until sufficient 
information has arrived 

  This implies the maintenance of multiple histories of 
hypothetical data association decisions in parallel 

  Multiple Hypothesis Tracking (MHT) 
 
 



Multi-Target DA: MHT 
Multiple Hypothesis Tracking 
  The number of association histories grows exponentially 
  Growth yields a hypothesis tree 
  Pruning strategies are mandatory in practice 
  Optimal Bayesian solution (without pruning) 

  In addition to the measurement-to-track associations, the 
MHT can also reason about track interpretations as 
  Occluded (label O) 
  Deleted (label D) 

 and measurement interpretations as 
  False alarms (label F) 
  New tracks (label N) 

  Interpretations are like associations to fixed labels 



Multi-Target DA: MHT 
:  Hypothesis 

:  Parent Hypothesis 

:  Assignment Set 

: 



Multi-Target DA: MHT 
  In this way, the MHT can deal with the entire life cycle 

of tracks (initialization, confirmation, occlusions, 
deletion) in a probabilistically consistent way 

  No additional track management system is needed 

  Which is then the best hypothesis? 
  Compute probabilies for hypotheses 
  This is done in a recursive Bayesian fashion 
  Best hypothesis is, for instance, the one with the highest 

probability 

  Yields a probability distribution over hypotheses 



MHT Example 



MHT Example (Detail) 



Multi-Target DA: MHT 
  The probability of an hypothesis                         

can be calculated using Bayes rules  

Likelihood  Assignment 
probability Prior  



Multi-Target DA: MHT 
  Measurement likelihood 

  Case 1: associated with track t 

  Case 2: false alarm 

  Case 3: new track  



Multi-Target DA: MHT 
  Assignment probability   

                                               is the probability of 
having      matched tracks,      occluded tracks,      
deleted tracks,      false alarm and      new tracks 

                                       is the probability of a possible 
configuration      given the number of events defined 
before 



Multi-Target DA: MHT 
  Assignment probability 1:  

  Assuming a multinomial distribution for track labels 

  Assuming a Poisson distribution for new tracks 

  Assuming a Poisson distribution for false alarm 

  We obtain 



  Assignment probability 2:  
  The possible choices of        taken as matched tracks 

  The combinations of               taken as new tracks or false 
alarms 

  The combinations of               taken as occluded or deleted 

  The probability is 1 over all the possible choices 

Multi-Target DA: MHT 

=1  

=1  
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Multi-Target DA: MHT 
  Assignment probability 2:  

  The possible choices of        taken as matched tracks 

  The combinations of               taken as new tracks or false 
alarms 

  The combinations of               taken as occluded or deleted 

  The probability is 1 over all the possible choices 

=1  

=1  



Multi-Target DA: MHT 
  Assignment probability   

  Putting everything together: 



Multi-Target DA: MHT 
  Assignment probability   

  Putting everything together: 

  Simplifying the expression we obtain                                          



Multi-Target DA: MHT Pruning 
  Clustering spatially disjoint hypothesis trees 

  Tracks are partitioned into clusters based on gating 
  A separate tree is grown for each cluster 

  K-best hypothesis tree 
  Directly generate the k-best hypothesis 
  Generation and evaluation in a single step 

 by Murty's algorithm and a linear assignment solver 
  Implements a generate-while-prune versus a generate-

then-prune strategy 

  N-Scan back pruning 
  Ambiguities are assumed to be resolved after N steps 
  Children at step k+N give the prob. of parents at step k 
  Keep only the most probable branch 



Multi-Target DA: MHT Example 
  People tracking in RGB-D data (three MS Kinect) 



Multi-Target DA: MHT Example 
  People tracking in 3D range data (Velodyne scanner) 



Summary 
  The validation gate is a region of acceptance 

such that                 of true measurements 
are rejected 

  False alarms are assumed to occur according to a 
Poisson distribution with rate lambda and uniformly 
in space  

 
  The NNSF is simple to implement but greedy and 

takes hard decisions. Good only if DA ambiguity is 
low 

  The PDAF is a Bayesian DA method that takes soft 
decisions by incorporating all validated measurements 
into a mixture distribution  



Summary 
  The NNSF works also for multiple targets. Same 

advantages and drawbacks 
  The global NN is formulated as a linear assignment 

problem, solved using e.g. the Hungarian method 
  The GNN finds the jointly optimal assignment in a 

multi-target setting 
  The MHT is a multi-frame DA method with delayed 

decision making 
  Maintains multiple histories of association decisions 

(hypotheses), computes a probabilities for them 
  Optimal Bayesian method (up to pruning) 
  Implementations of PDAF and MHT are used in many 

real-world applications (e.g. air traffic control) 



Why we teach this... 
How to escape a rebellious 
humanoid robot? 

  Run toward the light 
  Find clutter to hide 
  Hug a comrade, then dive into random 

direction 
  Wear similar clothing 
  Don't run in a predictable line, zigzag 

erratically 
  Try to mix with the crowd 
  Wear trenchcoat or long skirt to mask your 

movements 
  Hop, skip or jump occasionally  
  Vary rhythm and length of your stride 
  ... 

"How to Survive a Robot 
Uprising: Tips on Defen-
ding Yourself Against the 
Coming Rebellion," 
Daniel H. Wilson, 
Bloomsbury, 2005 


