Chapter Contents

- Overview
- Validation Gate
- False Alarm Model
- Single-Target DA
 - NNSF
 - PDAF
- Multi-Target DA
 - NNSF
 - Global NNSF
 - Multiple Hypothesis Tracking (MHT)
- Summary
Data Association

“Data association is the process of associating uncertain measurements to known tracks.”

Problem types
- Track creation, maintenance, and deletion
- Single or multiple targets and sensors
- Imperfect target detection
- False alarms
- Target occlusions

Approaches
- **Bayesian:** compute a full (or approx.) distribution in DA space from priors, posterior beliefs, and observations
- **Non-Bayesian:** compute a maximum likelihood estimate from the possible set of DA solutions
Data Association

Overall procedure:

- **Make observations** (= measurements).
 Measurements can be raw data (e.g. processed radar signals) or the output of some target detector (e.g. people detector)

- **Predict the measurements** from the predicted tracks. This yields an area in sensor space where to expect an observation. The area is called **validation gate** and is used to narrow the search

- **Check if a measurement lies in the gate.**
 If yes, then it is a valid candidate for a pairing/match
Data Association

What makes this a difficult problem

- **Multiple targets**
- **False alarms**
- **Detection uncertainty** (occlusions, sensor failures, ...)
- **Ambiguities** (several measurements in the gate)
Measurement Prediction

- Measurement and measurement cov. prediction
 - This is typically a frame transformation into sensor space

\[\hat{z}(k) = H(k)\hat{x}(k|k-1) \]
\[\hat{R}(k) = H(k)\hat{P}(k|k-1)H^T(k) \]

- If only the position of the target is observed (typical case), the measurement matrix is

\[z = [x \ y]^T \quad H = \begin{bmatrix} 1 & 0 & 0 & \cdots \end{bmatrix} \]

- Note: One can also observe
 - Velocity (Doppler radar)
 - Acceleration (accelerometers)
Validation Gate

- Assume that measurements are distributed according to a Gaussian, centered at the measurement prediction $\tilde{z}(k)$ with covariance $\tilde{S}(k)$

$$p(z(k)) = \mathcal{N}(z(k); \tilde{z}(k), \tilde{S}(k))$$

This is the measurement likelihood model

- Let further

$$d = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}$$

be the Mahalanobis distance between x and μ
Validation Gate

- Then, the measurements will be in the area
 \[
 \mathcal{V}(k, \gamma) = \{ z : (z - \bar{z})^T \hat{S}^{-1} (z - \bar{z}) \leq \gamma \}
 = \{ z : d^2 \leq \gamma \}
 \]
 with a probability defined by the gate threshold \(\gamma \) (omitting indices \(k \))

- This area is called validation gate

- The threshold is obtained from the inverse \(\chi^2 \) cumulative distribution at a significance level \(\alpha \)

- \(\chi^2 = \text{“chi square”} \)
Validation Gate

- The **shape** of the validation gate is a hyper-ellipsoid.
- This follows from setting

 \[c = \frac{1}{(2\pi)^{k/2}|S|^{1/2}} \exp \left(-\frac{1}{2} (z - \bar{z})^T S^{-1} (z - \bar{z}) \right) \]

 leading to

 \[c' = (z - \bar{z})^T S^{-1} (z - \bar{z}) \]

 which describes a **conic section** in matrix form

 \[x^T Q x = 0 \]

 \[x = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad x^T = [x, y, 1] \quad Q = \begin{bmatrix} A & B & D \\ B & C & E \\ D & E & F \end{bmatrix} \]

- The gate is a **iso-probability contour** obtained when intersecting a Gaussian with a hyper-plane.
Validation Gate

Why a χ^2 distribution?

- Let X_i be a set of k i.i.d. standard normally distributed random variables, $X_i \sim \mathcal{N}(x; 0, 1)$. Then, the variable Q
 $$Q = \sum_{i=1}^{k} X_i^2$$
 follows a χ^2 distribution with k “degrees of freedom”

- We will now show that the Mahalanobis distance is a sum of squared standard normally distributed RVs.
Validation Gate in 1D

- Assume 1D measurements and $\mu = \hat{z}(k)$, $\sigma^2 = \hat{S}(k)$
- The Mahalanobis distance is then

$$d^2 = (z - \mu)^T (\sigma^2)^{-1} (z - \mu) = \frac{(z - \mu)^2}{\sigma^2}$$

- By changing variables, $y = (z - \mu)/\sigma$, we have

$$y \sim \mathcal{N}(0, 1)$$

- Thus, $d^2 = y^2$ and is χ^2 distributed with 1 degree of freedom
Validation Gate in ND

- Assume ND measurements and \(\mu = \hat{z}(k), \Sigma = \hat{S}(k) \)
- The Mahalanobis distance is then
 \[
 d^2 = (z - \mu)^T \Sigma^{-1} (z - \mu)
 \]
- By changing variables, \(y = C^{-1}(z - \mu), \Sigma = CC^T \) we have \(y \sim \mathcal{N}(0, I) \) and therefore
 \[
 d^2 = y^T I^{-1} y \quad \Rightarrow \quad d^2 = \sum_{i=1}^{k} y_i^2
 \]
 which is \(\chi^2 \) distributed with \(k \) degrees of freedom.
- \(C \) is obtained from a Cholesky decomposition
Validation Gate

Where does the threshold γ come from?

- γ, often denoted $\chi^2_{k,\alpha}$, is taken from the inverse χ^2 cumulative distribution at a level α and k d.o.f.s.
- The values are typically given in tables, e.g. in most statistics books (or by the Matlab function `chi2inv`)
- Given the level α, we can now understand the interpretation of the validation gate:

 The validation gate is a region of acceptance such that $100(1 - \alpha)$% of true measurements are rejected

- Typical values for α are 0.95 or 0.99
Validation Gate

Euclidian distance

Takes into account:
✔ Position
✖ Uncertainty
✖ Correlations

→ It seems that i-a and j-b belong together

d_{i-a} = 2.24

\[d_{i-b} = 3.54\]
\[d_{j-a} = 3.61\]
\[d_{j-b} = 1.58\]
Validation Gate

Mahalanobis distance with diagonal covariance matrices

Takes into account:

✓ Position
✓ Uncertainty
✗ Correlations

→ Now, i-b is “closer” than j-b
Validation Gate

Mahalanobis distance

Takes into account:
✓ Position
✓ Uncertainty
✓ Correlations

→ It’s actually i-b and j-a that belong together!

\[d_{i-a} = 6.05 \]
\[d_{i-b} = 2.77 \]
\[d_{j-a} = 2.45 \]
\[d_{j-b} = 4.78 \]
False Alarms

- False alarms are **false positives**
- They can come from sensor imperfections, detector failures, or clutter
- **Clutter** is “unwanted echoes”, e.g. atmospheric turbulences
- Thus, the questions:

 What’s inside the **gate**?
 - A measurement or
 - A false alarm?

How to **model false alarms**?
- Uniform over sensor space
- Independent across time
False Alarm Model

- Assume (temporarily) that the sensor field of view V is discretized into N discrete cells, $c_i, \ i = 1, \ldots, N$
- In each cell, false alarms occur with probability P_F
- Assume independence across cells
- The occurrence of false alarms is a Bernoulli process (flipping an unfair coin) with probability $p = P_F$
- Then, the number of false alarms m_F follows a **Binomial distribution**

\[
P(K = m_F) = \binom{N}{m_F} p^{m_F} (1 - p)^{N-m_F}
\]

with expected value Np
False Alarm Model

- Let the spatial density λ be the number of false alarms over space
 \[\lambda = \frac{Np}{V} \]
 \([\text{occurrences per m}^2]\)

- Let now $N \to \infty$, that is, we reduce the cell size until the continuous case. Then the Binomial becomes a Poisson distribution with
 \[\mu_F(m_F) = e^{-\lambda V} \frac{(\lambda V)^m_F}{m_F!} \]

- The **measurement likelihood** of false alarms is assumed to be uniform,
 \[p(z|z \text{ is a false alarm}) = \frac{1}{V} \]
Single Target Data Association

Assumptions
- A **single** target to track
- Track already initialized
- Detection probability < 1
- False alarm probability > 0

Data Association approaches

Non-Bayesian: no prior association probabilities
- Nearest neighbor Standard filter (NNSF)
- Track splitting filter

Bayesian: computes association probabilities
- Probabilistic Data Association Filter (PDAF)
Single Target DA: NNSF

Nearest Neighbor Standard Filter (NNSF)

1. Compute Mahalanobis distance to all measurements
2. Accept the closest measurement
3. Update the track as if it were the correct one

Problem: with some probability the selected measurement is not the correct one. An incorrect association can lead to overconfident covariances, filter divergence and track loss. Note: covariances will collapse in any case.

- Conservative NNSF variant:
 Do not associate in case of ambiguities
- Other variant: Strongest Neighbor Standard filter:
 Used, e.g., with sonar sensors
Probabilistic Data Association filter (PDAF)

- Computes the **probability** of track-to-measurement associations, thus a **Bayesian** data association technique
- Opposed e.g. to the NNSF that uses a **ML** criterion based on the minimum Mahalanobis distance

Idea: Instead of taking a hard decision, update the track with a **weighted average** of all validated measurements
- The weights being the **individual association probabilities**
Single Target DA: PDAF

Probabilistic Data Association filter

- Integrates all measurements in the validation gate
 - Conditioning the update on the association events

\[\theta_i(k) = \begin{cases}
 z_i(k) \text{ is the correct measurement} & i = 1, \ldots, m(k) \\
 \text{no correct measurement is present} & i = 0
\end{cases} \]

- \(\beta_i \triangleq P(\theta_i|Z^k) \) is the association probability

- Assumption: At most one of the validated measurements comes from the target. All others are independently and uniformly distributed
Single Target DA: PDAF

- **Association probability** $\beta_i \triangleq P(\theta_i|Z^k)$ for a Poisson false alarm model is

$$
\beta_i(k) = \begin{cases}
\frac{e_i}{b + \sum_{j=1}^{\mu_F}} & i = 1, \ldots, m(k) \\
\frac{b}{b + \sum_{j=1}^{\mu_F}} & i = 0
\end{cases}
$$

- $e_i = \mu_F (m(k) - 1) \cdot P_D P_G \cdot P_G^{-1} \mathcal{N}(\nu_i(k); 0, \hat{S}(k))$
- $b = \mu_F (m(k))(1 - P_D P_G)$

- **Intuition:** depends on the number of validated measurements $m(k)$ versus the false alarms rate, the detection probability P_D of the target, the probability P_G that the target detection falls into the gate, and the individual innovations

(Derivation skipped)
Mixture Distributions

To understand the PDAF state update expressions, we recall some basics:

- **Mixture distributions**
 - A mixture pdf is a weighted sum of pdfs with the weights summing up to 1.
 - Consider a Gaussian mixture
 \[
 p(x) = \sum_{i=1}^{n} p_i \mathcal{N}(x; \bar{x}_i, P_i)
 \]
 with events \(A_i = \{ x \sim \mathcal{N}(\bar{x}_i, P_i) \} \). Then
 \[
 p(x) = \sum_{i=1}^{n} P\{A_i\} p(x|A_i) = \sum_{i=1}^{n} p_i \ p(x|A_i)
 \]
 with the events being mutually exclusive and exhaustive.
Mixture Distributions

- **Conditional expectation**
 \[E[x | A_i] = \bar{x}_i \]
 \[E[(x - \bar{x}_i)(x - \bar{x}_i)^T | A_i] = P_i \]

- **Moments of a mixture**
 - **Mean**
 \[\bar{x} = \sum_{i=1}^{n} p_i \bar{x}_i \]
 - **Covariance**
 \[E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{n} E[(x - \bar{x})(x - \bar{x})^T | A_i] p_i \]
Mixture Distributions

- **Moments of a mixture**: Covariance

\[
E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{\infty} E[(x - \bar{x})(x - \bar{x})^T|A_i] \ p_i
\]

\[
= \sum E[(x - \bar{x}_i + \bar{x}_i - \bar{x})(x - \bar{x}_i + \bar{x}_i - \bar{x})^T|A_i] \ p_i
\]
Mixture Distributions

- **Moments of a mixture**: Covariance

\[
E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{\infty} E[(x - \bar{x})(x - \bar{x})^T | A_i] \ p_i
\]

\[
= \sum E[(x - \bar{x}_i + \bar{x}_i - \bar{x})(x - \bar{x}_i + \bar{x}_i - \bar{x})^T | A_i] \ p_i
\]

\[
= \sum E[((x - \bar{x}_i) + (\bar{x}_i - \bar{x}))(x - \bar{x}_i + (\bar{x}_i - \bar{x}))^T | A_i] \ p_i
\]
Mixture Distributions

- Moments of a mixture: Covariance

\[
E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{n} E[(x - \bar{x})(x - \bar{x})^T | A_i] p_i \\
= \sum E[(x - \bar{x}_i + \bar{x}_i - \bar{x})(x - \bar{x}_i + \bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum E[((x - \bar{x}_i) + (\bar{x}_i - \bar{x}))(\bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum E[(x - \bar{x}_i)(x - \bar{x}_i)^T | A_i] p_i \\
+ E[(x - \bar{x}_i)(\bar{x}_i - \bar{x})^T | A_i] p_i + E[(\bar{x}_i - \bar{x})(x - \bar{x}_i)^T | A_i] p_i \\
+ E[(\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T | A_i] p_i
\]
Mixture Distributions

- **Moments of a mixture:** Covariance

\[
E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{\pi} E[(x - \bar{x}_i)(x - \bar{x})^T | A_i] p_i \\
= \sum E[(x - \bar{x}_i + \bar{x}_i - \bar{x})(x - \bar{x}_i + \bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum E[((x - \bar{x}_i) + (\bar{x}_i - \bar{x}))(x - \bar{x}_i) + (\bar{x}_i - \bar{x}))^T | A_i] p_i \\
= \sum E[(x - \bar{x}_i)(x - \bar{x}_i)^T | A_i] p_i \\
+ E[(x - \bar{x}_i)(\bar{x}_i - \bar{x})^T | A_i] p_i + E[(\bar{x}_i - \bar{x})(x - \bar{x}_i)^T | A_i] p_i \\
+ E[(\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum p_i P_i \\
+ (E[x | A_i] - \bar{x}_i)(\bar{x}_i - \bar{x})^T p_i + (\bar{x}_i - \bar{x})(E[x | A_i] - \bar{x}_i)^T p_i \\
+ (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i
\]
Mixture Distributions

- **Moments of a mixture:** Covariance

\[
E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{\infty} E[(x - \bar{x})(x - \bar{x})^T | A_i] p_i
\]

\[
= \sum E[(x - \bar{x}_i + \bar{x}_i - \bar{x})(x - \bar{x}_i + \bar{x}_i - \bar{x})^T | A_i] p_i
\]

\[
= \sum E[((x - \bar{x}_i) + (\bar{x}_i - \bar{x}))((x - \bar{x}_i) + (\bar{x}_i - \bar{x}))^T | A_i] p_i
\]

\[
= \sum E[(x - \bar{x}_i)(x - \bar{x}_i)^T | A_i] p_i
+ E[(x - \bar{x}_i)(\bar{x}_i - \bar{x})^T | A_i] p_i + E[(\bar{x}_i - \bar{x})(x - \bar{x}_i)^T | A_i] p_i
+ E[(\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T | A_i] p_i
\]

\[
= \sum p_i P_i
+ (E[x | A_i] - \bar{x}_i)(\bar{x}_i - \bar{x})^T p_i + (\bar{x}_i - \bar{x})(E[x | A_i] - \bar{x}_i)^T p_i
+ (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i
\]

\[
= \sum p_i P_i + \sum (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i
\]
Mixture Distributions

- **Moments of a mixture:** Covariance

\[
E[(x - \bar{x})(x - \bar{x})^T] = \sum_{i=1}^{n} E[(x - \bar{x}_i)(x - \bar{x}_i)^T | A_i] p_i \\
= \sum_{i=1}^{n} E[(x - \bar{x}_i + \bar{x}_i - \bar{x})(x - \bar{x}_i + \bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum_{i=1}^{n} E[((x - \bar{x}_i) + (\bar{x}_i - \bar{x}))(x - \bar{x}_i) + (\bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum_{i=1}^{n} E[(x - \bar{x}_i)(x - \bar{x}_i)^T | A_i] p_i \\
+ E[(x - \bar{x}_i)(\bar{x}_i - \bar{x})^T | A_i] p_i + E[(\bar{x}_i - \bar{x})(x - \bar{x}_i)^T | A_i] p_i \\
+ E[(\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T | A_i] p_i \\
= \sum_{i=1}^{n} p_i P_i \\
+ (E[x | A_i] - \bar{x}_i)(\bar{x}_i - \bar{x})^T p_i + (\bar{x}_i - \bar{x})(E[x | A_i] - \bar{x}_i)^T p_i \\
+ (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i \\
= \sum_{i=1}^{n} p_i P_i + \sum_{i=1}^{n} (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i \\
= \sum_{i=1}^{n} p_i P_i + \bar{P}
Mixture Distributions

- **Moments of a mixture:** Spread of the means

\[
\tilde{P} = \sum_{i=1}^{n} (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i
\]

Note resemblance to the **sample covariance matrix**

- **Alternative expression**

\[
\tilde{P} = \sum (\bar{x}_i - \bar{x})(\bar{x}_i - \bar{x})^T p_i
\]

\[
= \sum (\bar{x}_i \bar{x}_i^T - \bar{x}_i \bar{x}^T - \bar{x} \bar{x}_i^T + \bar{x} \bar{x}^T) p_i
\]

\[
= \sum \bar{x}_i \bar{x}_i^T p_i - \sum \bar{x}_i \bar{x}^T p_i - \sum \bar{x} \bar{x}_i^T p_i + \sum \bar{x} \bar{x}^T p_i
\]

\[
= \sum \bar{x}_i \bar{x}_i^T p_i - \sum p_i \bar{x}_i \bar{x}^T - \bar{x} \sum p_i \bar{x}_i^T + \bar{x} \bar{x}^T \sum p_i
\]

\[
= \sum \bar{x}_i \bar{x}_i^T p_i - \bar{x} \bar{x}^T - \bar{x} \bar{x}^T + \bar{x} \bar{x}^T
\]

\[
= \sum p_i \bar{x}_i \bar{x}_i^T - \bar{x} \bar{x}^T
\]
State update

\[
\hat{x}(k|k) = \hat{x}(k|k - 1) + K(k) \nu(k)
\]

- With the combined innovation

\[
\nu(k) = \sum_{i=1}^{m} \beta_i(k) \nu_i(k)
\]

summed over all \(m\) association events \(\theta_i(k)\).

The events \(\theta_i(k)\) are assumed to be exhaustive (their probabilities sums up to one) and mutually exclusive (they cannot occur at the same time)
Single Target DA: PDAF

Covariance update

\[P(k|k) = E[(x - \hat{x}(k|k))(x - \hat{x}(k|k))^T] \]

\[= \sum_{i=0}^{m} E[(x - \hat{x}(k|k))(x - \hat{x}(k|k))^T | \theta_i] \beta_i \]

\[= \sum_{i=0}^{m} \beta_i P_i(k|k) + \tilde{P} \]

For \(i = 0 \) (no correct measurement), we have

\[P_0(k|k) = P(k|k - 1) \]

while for \(i \neq 0 \) (one of the \(z_i \)'s is the correct measurement)

\[P_i(k|k) = P(k|k) = (I - K(k)H(k)) P(k|k - 1) \]
Single Target DA: PDAF

Covariance update

Therefore, with $\beta_0(k) = 1 - \sum_{i=1}^{m} \beta_i(k)$ we get

$$P(k|k) = \beta_0 P(k|k - 1) + (1 - \beta_0) P(k|k) + \tilde{P}(k)$$

The last term is obtained as follows. Starting from

$$\tilde{P} = \sum_{i=0}^{m} \beta_i \hat{x}_i(k|k) \hat{x}_i(k|k)^T - \hat{x}(k|k) \hat{x}(k|k)^T$$

we substitute

$$\hat{x}_i(k|k) = \hat{x}(k|k - 1) + K(k) \nu_i(k)$$

$$\hat{x}(k|k) = \hat{x}(k|k - 1) + K(k) \nu(k)$$
Covariance update

... and, over some intermediate steps, arrive at

\[
\tilde{P} = K(k) \left[\sum_{i=0}^{m} \beta_i \nu_i(k) \nu_i(k)^T - \nu(k) \nu(k)^T \right] K(k)^T
\]

- This is the (weighted) spread of the innovations term
- Error propagation from the measurement space into the state space across the Kalman gain
- It is positive semidefinite (a sum of dyads $a \cdot a^T$ with positive weighting)
Single Target DA: PDAF

Covariance update

\[P(k|k) = \beta_0(k)P(k|k - 1) + (1 - \beta_0(k))P(k|k) + \tilde{P}(k) \]

- With probability \(\beta_0(k) \) none of the measurements is correct, the predicted covariance appears with this weighting ("no update")

- With probability \((1 - \beta_0(k)) \) the correct measurement is available and the posterior covariance appears with this weighting

- Since it is unknown which if the measurements is correct, the term \(\tilde{P} \) increases the covariance to account for the origin uncertainty
Single Target DA: PDAF

- All **other** calculations in the PDAF
 - State prediction
 - Covariance prediction
 - Innovation covariance
 - Kalman gain

are done as in the **standard** Kalman filter

- The only **difference** is in the use of the **combined innovation** in the state update and the **increased covariance** of the updated state
Single Target DA: PDAF

- Example

- Tracking in presence of false alarms and mis-detections ($P_D < 1$)
- At $k = 7$ there is no target detection but a false alarm
- The PDAF, accounting for the origin uncertainty, has a large validation gate
- The NNSF-tracker loses the target
Single Target DA: Wrap Up

- The NNSF takes a **hard** association decision
 - This hard decision is sometimes correct and sometimes wrong

- The PDAF relies on a **soft** decision since it averages over all the association possibilities
 - This soft decision is never totally correct but never totally wrong

- This is why **the PDAF is a suboptimal** strategy
 - To be precise: the PDAF is suboptimal since it approximates the conditional pdf of the target’s state at every stage as a Gaussian with moments matched to the mixture

\[
p(x \mid Z) = \sum_{A_i \in \mathcal{A}} p(x \mid A_i, Z) \beta_i
\]
Multi-Target Data Association

Assumptions
- **Multiple** targets to track
- Tracks already initialized
- Detection probability $P_D < 1$
- False alarm probability $P_F > 0$

Data Association approaches
- **Non Bayesian**: ML criteria
 - NNSF, Global NNSF
- **Bayesian**: compute association probabilities
 - JPDAF, MHT, MCMC
Multi-Target DA: NNSF

Nearest Neighbor Standard Filter (NNSF)

1. Build the assignment matrix $A = \begin{bmatrix} d_{ij}^2 \end{bmatrix}$ with

$$d_{ij}^2 = \nu_{ij}(k)^T S_j^{-1}(k) \nu_{ij}(k)$$

- Rectangular

$$A = \begin{bmatrix} d_{11}^2 & d_{12}^2 & d_{13}^2 & d_{14}^2 & d_{15}^2 & d_{16}^2 & d_{17}^2 & d_{18}^2 \\ d_{21}^2 & d_{22}^2 & d_{23}^2 & d_{24}^2 & d_{25}^2 & d_{26}^2 & d_{27}^2 & d_{28}^2 \end{bmatrix}$$

- Square

Multi-Target DA: NNSF

Nearest Neighbor Standard Filter (NNSF)

1. Build the assignment matrix $A = [d_{ij}^2]$ with
 $$d_{ij}^2 = v_{ij}(k)^T S_j^{-1}(k) v_{ij}(k)$$

2. Iterate
 - Find the minimum cost assignment in A
 - Remove the row and column of that assignment

3. Check if assignment is in the validation regions
 - Unassociated tracks can be used for track deletion
 - Unassociated meas. can be used for track creation

- Problem: Does generally not find the global minimum
- Conservative variant: no association in case of ambiguities
Multi-Target DA: Global NNSF

1. Build the assignment matrix \(A = [d_{ij}^2] \) with
 \[
d_{ij}^2 = \nu_{ij}(k)^T S_j^{-1}(k) \nu_{ij}(k)
 \]

2. Solve the **linear assignment problem**
 \[
 \min \sum d_{ij}^2 \cdot x_{ij} \quad x_{ij} \in \{0, 1\}
 \]
 \[
 \sum_i x_{ij} = 1 \quad \sum_j x_{ij} = 1
 \]
 - **Hungarian** method for square matrices
 - **Munkres** algorithm for rectangular matrices

3. Check if assignments are in the validation gate

Performs DA jointly, finds **global optimum**.
Multi-Target DA: Global NNSF

Linear assignment problem

- Is one of the most famous problems in linear programming and in combinatorial optimization
- Used to find the best assignment of \(n \) differently qualified workers to \(n \) jobs
- Also called "the personnel assignment problem", first solutions in the 1940s.

- By today, many efficient methods exist. The **Hungarian method**, while not the most efficient one, is still a popular algorithm
- Can also be solved for non-square problems by **Munkres' algorithm**
Problem statement:

We are given an \(n \times n \) cost matrix \(C = (c_{ij}) \), and we want to select \(n \) elements of \(C \), so that there is exactly one element in each row and one in each column, and the sum of the corresponding costs

\[
\sum_i x_{ij} = 1 \quad \sum_j x_{ij} = 1
\]

and the sum of the corresponding costs

\[
\min \sum d_{ij}^2 \cdot x_{ij} \quad x_{ij} \in \{0, 1\}
\]

is a minimum.
Multi-Target DA: Global NNSF

Example: NNSF versus Global NNSF

Which is the best assignment?

△ Observations ⊕ Predictions
Multi-Target DA: Global NNSF

Example: NNSF versus Global NNSF

△ Observations ⊕ Predictions

NNSF:
Greedy
Multi-Target DA: Global NNSF

Example: NNSF versus Global NNSF

NNSF:
Greedy

△ Observations ⊕ Predictions
Multi-Target DA: Global NNSF

Example: NNSF versus Global NNSF

Global NNSF:
Globally optimal

\[\triangle \text{ Observations} \quad \color{purple} \pm \text{ Predictions} \]
Multi-Target DA: MHT

- All DA methods considered so far are **single-frame**
- Hard or soft **decisions** are taken after **each step**
- In the presence of false alarms, misdetections, maneuvers and lengthy occlusion events, this is an **error-prone** strategy

- We want to **delay decisions** until sufficient information has arrived
- This implies the maintenance of multiple histories of **hypothetical** data association decisions in **parallel**

- **Multiple Hypothesis Tracking (MHT)**
Multi-Target DA: MHT

Multiple Hypothesis Tracking

- The number of association histories grows **exponentially**
- Growth yields a **hypothesis tree**
- **Pruning** strategies are mandatory in practice
- **Optimal Bayesian solution** (without pruning)

- In addition to the measurement-to-track associations, the MHT can also reason about **track interpretations** as
 - Occluded (label O)
 - Deleted (label D)

and **measurement interpretations** as
 - False alarms (label F)
 - New tracks (label N)

- Interpretations are like associations to fixed labels
Multi-Target DA: MHT

Θ^k_i: Hypothesis

$\Theta^{k-1}_{p(i)}$: Parent Hypothesis

$\theta_{c(i)}(k)$: Assignment Set

$\theta_{c(i)}(k)$:

\[
\begin{array}{c|c|c|c|c|c}
 & t_1 & t_2 & t_3 & F & N \\
\hline
z_1 & 0 & 0 & 0 & 0 & 1 \\
\hline
z_2 & 1 & 0 & 0 & 0 & 0 \\
z_3 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

$\{\{z_1, N\}, \{z_2, t_1\}, \{z_3, t_3\}\}$
Multi-Target DA: MHT

- In this way, the MHT can deal with the entire life cycle of tracks (initialization, confirmation, occlusions, deletion) in a probabilistically consistent way
- No additional track management system is needed

- Which is then the **best hypothesis**?
 - Compute **probabilities for hypotheses**
 - This is done in a **recursive Bayesian** fashion
 - **Best** hypothesis is, for instance, the one with the **highest** probability

- Yields a **probability distribution over hypotheses**
MHT Example
MHT Example (Detail)
Multi-Target DA: MHT

- The **probability of an hypothesis** \(\Theta_i^k = \{ \Theta_{p(i)}^{k-1}, \theta_c(i)(k) \} \) can be calculated using Bayes rules.

\[
P(\Theta_i^k | Z^k) = P(\Theta_{p(i)}^{k-1}, \theta_c(i)(k) | Z^k) =
\]
\[
\frac{1}{\eta} \cdot p(Z(k) | \Theta_{p(i)}^{k-1}, \theta_c(i)(k), Z^{k-1}) \cdot P(\theta_c(i)(k) | \Theta_{p(i)}^{k-1}, Z^k) \cdot P(\Theta_{p(i)}^{k-1} | Z^{k-1})
\]

- **Likelihood**
- **Assignment probability**
- **Prior**
Multi-Target DA: MHT

- **Measurement likelihood**

\[
p(Z(k)|\Theta^{k-1}, \theta(k), Z^{k-1}) = \prod_{l=1}^{m(k)} p(z_l(k)|\Theta^{k-1}, \theta(k), Z^{k-1})
\]

- **Case 1: associated with track t**

\[
p(z_l(k)|\Theta^{k-1}, \theta(k), Z^{k-1}) = \mathcal{N}(z_l(k); \hat{z}_t(k|k-1), S_t(k))
\]

- **Case 2: false alarm**

\[
p(z_l(k)|\Theta^{k-1}, \theta(k), Z^{k-1}) = V^{-1}
\]

- **Case 3: new track**

\[
p(z_l(k)|\Theta^{k-1}, \theta(k), Z^{k-1}) = V^{-1}
\]
Multi-Target DA: MHT

- Assignment probability

\[P(\theta(k)|\Theta^{k-1}, Z^k) = P(\theta(k)|N_M, N_O, N_D, N_N, N_F) \cdot P(N_M, N_O, N_D, N_N, N_F|\theta(k), \Theta^{k-1}) \]

- \(P(N_M, N_O, N_D, N_N, N_F|\theta(k), \Theta^{k-1}) \) is the probability of having \(N_M \) matched tracks, \(N_O \) occluded tracks, \(N_D \) deleted tracks, \(N_N \) false alarm and \(N_F \) new tracks

- \(P(\theta(k)|N_M, N_O, N_D, N_N, N_F) \) is the probability of a possible configuration \(\theta(k) \) given the number of events defined before
Multi-Target DA: MHT

- Assignment probability 1: \(P(N_M, N_O, N_D, N_N, N_F | \theta(k), \Theta^{k-1}) \)
 - Assuming a multinomial distribution for track labels
 \[
 P(N_M, N_O, N_D | \theta(k), \Theta^{k-1}) = \frac{N_T!}{N_M! N_O! N_D!} p_M^{N_M} p_O^{N_O} p_D^{N_D}
 \]
 - Assuming a Poisson distribution for new tracks
 \[
 P(N_N | \theta(k), \Theta^{k-1}) = \frac{(V \lambda_N)^{N_N} e^{-V \lambda_N}}{N_N!}
 \]
 - Assuming a Poisson distribution for false alarm
 \[
 P(N_F | \theta(k), \Theta^{k-1}) = \frac{(V \lambda_F)^{N_F} e^{-V \lambda_F}}{N_F!}
 \]
 - We obtain
 \[
 P(\cdot) = \frac{N_T! (e^{-V \lambda_N})(e^{-V \lambda_F})}{N_N! N_F! N_M! N_O! N_D!} (V \lambda_N)^{N_N} (V \lambda_F)^{N_F} p_M^{N_M} p_O^{N_O} p_D^{N_D}
 \]
Multi-Target DA: MHT

- **Assignment probability 2:** $P(\theta(k)|N_M, N_O, N_D, N_N, N_F)$
 - The possible choices of $m(k)$ taken as matched tracks:
 $$\binom{m(k)}{N_M} \cdot \text{Perm}(N_M, N_T) = \frac{m(k)!}{N_M!(m(k) - N_M)! (N_T - N_M)!}$$
 - The combinations of $m(k) - N_M$ taken as new tracks or false alarms:
 $$\binom{m(k) - N_M}{N_N} \cdot \binom{m(k) - N_M}{N_F} = \frac{(m(k) - N_M)!}{N_N!(m(k) - N_M - N_N)!}$$
 - The combinations of $N_T - N_M$ taken as occluded or deleted:
 $$\binom{N_T - N_M}{N_O} \cdot \binom{N_T - N_M}{N_D} = \frac{(N_T - N_M)!}{N_O!(N_T - N_M - N_O)!}$$
 - The probability is 1 over all the possible choices:
 $$\left[\frac{m(k)!}{N_M!(m(k) - N_M)! (N_T - N_M)!} \cdot \frac{N_T!}{N_N!(m(k) - N_M - N_N)!} \cdot \frac{(m(k) - N_M)!}{N_O!(N_T - N_M - N_O)!} \right]^{-1}$$
Multi-Target DA: MHT

- **Assignment probability 2:** $P(\theta(k)|N_M, N_O, N_D, N_N, N_F)$
 - The possible choices of N_M taken as matched tracks
 \[
 \binom{m(k)}{N_M} \text{Perm}(N_M, N_T) = \frac{m(k)!}{N_M!(m(k) - N_M)! (N_T - N_M)!}
 \]
 - The combinations of N_N taken as new tracks or false alarms
 \[
 \binom{m(k) - N_M}{N_N} \binom{m(k) - N_M - N_N}{N_F} = \frac{(m(k) - N_M)!}{N_N!(m(k) - N_M - N_N)!}
 \]
 - The combinations of N_O taken as occluded or deleted
 \[
 \binom{N_T - N_M}{N_O} \binom{N_T - N_M}{N_D} = \frac{(N_T - N_M)!}{N_O!(N_T - N_M - N_O)!}
 \]
 - The probability is 1 over all the possible choices

\[
\begin{bmatrix}
\frac{m(k)!}{N_M!(m(k) - N_M)!} & \frac{N_T!}{(N_T - N_M)!} & \frac{(m(k) - N_M)!}{N_N!(m(k) - N_M - N_N)!} & \frac{(N_T - N_M)!}{N_O!(N_T - N_M - N_O)!}
\end{bmatrix}^{-1}
\]
Multi-Target DA: MHT

- **Assignment probability 2:** \(P(\theta(k)|N_M, N_O, N_D, N_N, N_F) \)
 - The possible choices of \(m(k) \) taken as matched tracks
 \[
 \binom{m(k)}{N_M} \text{Perm}(N_M, N_T) = \frac{m(k)!}{N_M!(m(k) - N_M)! (N_T - N_M)!} \frac{N_T!}{N_T}
 \]
 - The combinations of \(m(k) - N_M \) \(N_N \) taken as new tracks or false alarms
 \[
 \binom{m(k) - N_M}{N_N} \binom{m(k) - N_M - N_N}{N_F} = \frac{(m(k) - N_M)!}{N_N!(m(k) - N_M - N_N)!}
 \]
 - The combinations of \(N_T - N_M \) \(N_O \) taken as occluded or deleted
 \[
 \binom{N_T - N_M}{N_O} \binom{N_T - N_M - N_O}{N_D} = \frac{(N_T - N_M)!}{N_O!(N_T - N_M - N_O)!}
 \]
 - The probability is 1 over all the possible choices
 \[
 P(\theta(k)|N_M, N_O, N_D, N_N, N_F) = \frac{N_M!N_N!N_F!N_O!N_D!}{m(k)!N_T!}
 \]
Multi-Target DA: MHT

- **Assignment probability**

\[
P(\theta(k)|\Theta^{k-1}, Z^k) = P(\theta(k)|N_M, N_O, N_D, N_N, N_F) \cdot P(N_M, N_O, N_D, N_N, N_F|\theta(k), \Theta^{k-1})
\]

- **Putting everything together:**

\[
P(\theta(k)|\Theta^{k-1}, Z^k) = \frac{N_T!(e^{-V\lambda_N})(e^{-V\lambda_F})}{N_N!N_F!N_M!N_O!N_D!}(V\lambda_N)^{N_N}(V\lambda_F)^{N_F}p_M^{N_M}p_O^{N_O}p_D^{N_D} \frac{N_M!N_N!N_F!N_O!N_D!}{m(k)!N_T!}
\]
Multi-Target DA: MHT

- **Assignment probability**

\[
P(\theta(k)|\Theta^{k-1}, Z^k) = P(\theta(k)|N_M, N_O, N_D, N_N, N_F) \cdot P(N_M, N_O, N_D, N_N, N_F|\theta(k), \Theta^{k-1})
\]

- **Putting everything together:**

\[
P(\theta(k)|\Theta^{k-1}, Z^k) = \frac{N_T!(e^{-V\lambda_N})(e^{-V\lambda_F})}{N_N!N_T!N_M!N_O!N_D!} (V\lambda_N)^{N_N} (V\lambda_F)^{N_F} p_M^{N_M} p_O^{N_O} p_D^{N_D} \frac{N_M!N_N!N_F!N_O!N_D!}{m(k)!N_T!}
\]

- **Simplifying the expression we obtain**

\[
P(\theta(k)|\Theta^{k-1}, Z^k) = \frac{(e^{-V\lambda_N})(e^{-V\lambda_F})}{m(k)!} (V\lambda_N)^{N_N} (V\lambda_F)^{N_F} p_M^{N_M} p_O^{N_O} p_D^{N_D}
\]
Multi-Target DA: MHT Pruning

- **Clustering** spatially disjoint hypothesis trees
 - Tracks are partitioned into clusters based on gating
 - A separate tree is grown for each cluster

- **K-best** hypothesis tree
 - Directly generate the k-best hypothesis
 - Generation and evaluation in a single step by Murty's algorithm and a linear assignment solver
 - Implements a *generate-while-prune* versus a *generate-then-prune* strategy

- **N-Scan back** pruning
 - Ambiguities are assumed to be resolved after N steps
 - Children at step $k+N$ give the prob. of parents at step k
 - Keep only the most probable branch
Multi-Target DA: MHT Example

- People tracking in RGB-D data (three MS Kinect)
Multi-Target DA: MHT Example

- People tracking in 3D range data (Velodyne scanner)
Summary

- The validation gate is a **region of acceptance** such that $100(1 - \alpha)\%$ of **true measurements** are **rejected**
- False alarms are assumed to occur according to a Poisson distribution with rate lambda and uniformly in space

- The NNSF is **simple** to implement but **greedy** and takes **hard** decisions. Good only if DA ambiguity is low
- The PDAF is a Bayesian DA method that takes **soft** decisions by incorporating all validated measurements into a **mixture** distribution
Summary

- The NNSF works also for multiple targets. Same advantages and drawbacks.
- The global NN is formulated as a linear assignment problem, solved using e.g. the Hungarian method.
- The GNN finds the jointly optimal assignment in a multi-target setting.
- The MHT is a multi-frame DA method with delayed decision making.
- Maintains multiple histories of association decisions (hypotheses), computes a probabilities for them.
- Optimal Bayesian method (up to pruning).
- Implementations of PDAF and MHT are used in many real-world applications (e.g. air traffic control).
Why we teach this...

How to escape a rebellious humanoid robot?

- Run toward the light
- Find clutter to hide
- Hug a comrade, then dive into random direction
- Wear similar clothing
- Don't run in a predictable line, zigzag erratically
- Try to mix with the crowd
- Wear trenchcoat or long skirt to mask your movements
- Hop, skip or jump occasionally
- Vary rhythm and length of your stride
- ...

"How to Survive a Robot Uprising: Tips on Defending Yourself Against the Coming Rebellion," Daniel H. Wilson, Bloomsbury, 2005