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Motivation (1)

» Long-term monitoring of activities of daily
living

« Learn typical navigation / transportation
routines from user locations (GPS traces)

» Real-time tracking and predicting a user’s
behavior

= Recognizing user errors

« Guidance for people with cognitive
disabilities (e.g., Alzheimer's patients)



Motivation (2)

« Recognize daily activities (working, visiting
friends, shopping, ...)

« Infer significant places (home, workplace,
friends, stores, restaurants, ...)

« To provide location-based information
services (e.g., searching nearby restaurants)

« For behavior analysis / personal guidance
systems to help cognitively impaired people



Learning and Reasoning About
Transportation Routines

Given the data stream of a GPS device
= Track a user’s location

» Infer the user’s mode of transportation
(foot, car, bus, ...)

» Predict the future movements (short-term
and distant goals)

= Detect novel behavior / user errors



Geographic Information
Systems
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GPS-Tracking is not Trivial

« GPS errors

» Dead zones near buildings, trees, ...

» Sparse measurements inside vehicles (bus)
« Multiple possible paths

= Inaccurate street map



Architecture
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Probabilistic Inference

» Hierarchical activity model:
3-level dynamic Bayesian network (DBN) to
model temporal dependencies as well as

= Novel behavior (top level)
= Navigation goal (second level)

= Transportation mode, location, and velocity
(lowest level)

« Inference via Rao-Blackwellized particle
filter in combination with a Kalman filter

« Parameter learning via Expectation-
Maximization (EM)



Lowest Level of the DBN

« Estimation of transportation mode, location,
and velocity

» Use the given street map as a directed graph

» Define a location as:
« An edge/street with a direction (up/down)
= Distance from start vertex of edge

» Prediction:

= Move along the edges according to the velocity
model

= Correction:
« Update the estimate based on GPS readings
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Dynamic Bayesian Network

X (%) Edge, velocity, position

@ GPS reading

Time k-1 Time Kk

Task: Estimate the posterior over the
hidden variables

slide credit: D. Fox 11



Kalman Filtering on a Graph:
Prediction Step

Problem: Predicted location is multi-modal

slide credit: D. Fox
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Kalman Filtering on a Graph:
Correction Step

Problem: GPS reading is not on the graph

slide credit: D. Fox
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Kalman Filtering on a Graph:
Correction Step

Problem: GPS reading is not on the graph

slide credit: D. Fox
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Kalman Filtering on a Graph:
Correction Step

Problem: GPS reading is not on the graph

slide credit: D. Fox
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Dynamic Bayesian Network

Edge, velocity, position
GPS association

GPS reading

Edge transition
(%0
0,
(20

Time k-1 Time k

Task: Estimate the posterior over all hidden
variables

slide credit: D. Fox 16



Rao-Blackwellized Particle
Filtering (RBPF)

« Inference: Estimate the posterior given all
past sensor measurements

« Particle filtering
= Approximation of the posterior using samples
= Supports multi-modal distributions
= Supports discrete variables (e.g., transp. mode)

= Rao-Blackwellization

« Sample some variables of the state space and
solve the others analytically conditioned on
sampled values

17
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Factorization
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« Histories over the velocity, edge transition,
and edge association, represented by
samples in the PF
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Factorization
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« Histories over the velocity, edge transition,
and edge association, represented by
samples in the PF

« Location of the person on the graph,
estimated by a KF conditioned on samples
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Rao-Blackwellized Particle Filter

« Represents the posterior by a set of n
weighted particles and applies sampling

S = {(sD w®) i =1,... n}

= Here: Particles include distributions over
variables, not just single samples

21



Rao-Blackwellized Particle Filter

« Represents the posterior by a set of n
weighted particles and applies sampling

S = {(sD w®) i =1,... n}

= Here: Particles include distributions over
variables, not just single samples

« Each particle of the RBPF has the form
g1 — <€(z) v 0O N (1, o )>

.
gl g
sampled values: KF for the location
= edge transitions
= velocities

= edge associations 22



Sampling Step

« Sample the velocity v(” from a mixture of
Gaussians, which is conditioned on the
transportation mode (described later on)
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Sampling Step

« Sample the velocity v(” from a mixture of
Gaussians, which is conditioned on the
transportation mode (described later on)

« Sample the edge transition e(” based on the
previous position of the person and a
learned transition model

« Sample the edge association 8(” based on
the distance between z, and the streets in
the vicinity
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Kalman Filter

» Update of the position estimate based on
the sampled values and the measurement

» Prediction:
« Use sampled velocity to predict traveled distance

= Use sampled edge transition if predicted mean
transits over a vertex

= Correction:

= Find shortest path between the prediction and
the “snapped” measurement

« Apply a 1-dimensional Kalman filtering correction
step

25



Prediction Step

image source: D. Fox
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Correction Step

Depending on the edge association, the
correction step moves the estimate up or
downwards

image source: D. Fox
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Mode of Transportation /
Prior Knowledge

Transportation modes have different

velocity mode

Buses run on

S

bus routes (corresponding to

edge transitions)

Get on/off the bus near bus stops

Switch to car near car location
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Dynamic Bayesian Network
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Transportation Routines

4r & A 5
Home o RS
B Workplace

« Goal (destination):

« Workplace (could also be friends, restaurant, ...)

« Trip segments: <start, end, transportation>
= Home to Bus stop A on Foot
= Bus stop A to Bus stop B on Bus
= Bus stop B to workplace on Foot

slide credit: D. Fox 31



Hierarchical Model

_— / Goal

@ Trip segment

(m.) Transportation mode
\@ Edge, velocity, position

@ @ GPS reading

Time k-1 Time k

5@ = ((g,6)D,m® ()o@ 90 N (1, 52))

slide credit: D. Fox
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Remarks

= Note the hierarchical structure

« RBPF first samples the goal and trip
segment

« Low-level model (w/o goal and trip
segment) samples the edge transition solely
based on the location and the transp. mode

» Hierarchical model takes the current trip
segment into account

« Edge transition probabilities depend on trip
segments, which leads to improved
predictive capabilities
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Learning the DBN Parameters

« Learn variable domains
« Goals: Locations where the user stays for long
time
= Transition points: Locations with high
transportation mode switching probability

= Trip segments: Connect transition points
and goals

» Learn transition matrices for goals, trip
segments, and edges via EM

« Unlabeled data: 30 days of one user, logged
at 2 second intervals

34



Prediction of Goal and Path

® Predicted
goal
Predicted
path
4

Correct goal and route predicted
100 blocks away

animation: D. Fox
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Learned Transition Probabilities
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Prediction Capabilities
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Detecting Deviations
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Detecting Novel Behavior

« RBPF: Sample novelty variable
» Depending on the sampled value use
« Hierarchical model as trained for the user

« Untrained, flat model (no user-specific
preferences for motion directions or
transportation modes)
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Detecting User Errors
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.X

Missing the bus stop

animation: D. Fox
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stop
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Application: Cognitive Aid

image source: D. Fox
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Application: Cognitive Aid

image source: D. Fox
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Inferring Significant Places and
Activities

« So far
= No distinction between different types of goals

« Fixed thresholds for the duration to extract goals
and transition mode transfer locations

 However, both can have a significant
influence on the inference quality

» Idea: Simultaneous identification and
labeling of significant locations and

estimation of activity
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Give Semantic Meaning to Places
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Geographic Information

Systems
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Activity Inference

« For each location (10m patch) infer the
person’s activity (e.g., bus, foot, work, visit)

= Use information such as

« Temporal pattern: duration, time of day, etc.

« Geographic features: restaurant / store / bus
stop nearby

= Activities of neighbor cells

« Additionally consider number of occurances
of labels (e.g., home, workplace;
summation constraints)
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Conditional Random Fields (CRF)

« CRF are undirected graphical models
« Developed for labeling data sequences

« Do not assume independence between the
observations

« Relationships between labels of states are
considered and the labeling is done
simultaneously

» CRF model the distribution p(x | z)
= Hidden states x = activities
= Observations z = features

47



Conditional Random Fields

Hidden states x
Observations z

slide adapted from: D. Fox

48



Conditional Random Fields

Hidden states x

Observations z Q Q

Clique potentials . measure the “compatibility” among
the variables in a clique ¢

Local potentials link states to observations

Neighborhood potentials link states to neighboring states

slide adapted from: D. Fox 49



Conditional Random Fields
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Feature Functions

- Typically designed by the user

= Extract a vector of features from variable
values

« Weights represent importance of different
features for correctly inferring the hidden

states

« Weights are learned from labeled training
data

« Approximation of the conditional distribution
parameterized via the weights p(x | z, w)
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Features for Place Labeling

« Temporal information: time of day / week, duration
(binary indicator function)

= Average velocity (binary indicator)

« Geographic information: bus stop / restaurant /
shop nearby (binary indicator)

« Transition relation: Adjacent activities (e.g., driving
the car after taking the bus rather unlikely)

= Spatial context: Relation between place and activity
(count + binary indicator for each combination of
place, activity, frequency)

= Summation constraints: Number of places labeled

home / workplace (count features)
52



Hierarchical CRF Model

_ Activity sequence
| walk, drive, ride bus,

ay
work, visit, sleep,
ﬁ pickup, get on/off bus
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slide adapted from: D. Fox 53



Hierarchical CRF Model

Global, soft constraints
# homes, workplaces

Significant places
home, work, bus stop,
parking lot, friend’s home

Activity sequence
a, a, as a4} as snn  BAnoAn-4 @n] walk, drive, ride bus,

T 1 T 1

OOJOOOOOOO . O00OOOOC) Local evidence

time, duration,
velocity, geographic
information

slide adapted from: D. Fox >4



Experimental Results

» GPS data from 4 different persons / 7 days

« 40,000 GPS measurements / 10,000 activity
segments

« Manually labeled activities and places
« Leave-one-out cross validation

« Maximum pseudo-likelihood for learning
(1 minute to converge)

« Inference via loopy belief propagation
(activities and places from 1 week within 1

minute)
55



Example: Raw GPS Data

image from: D. Fox
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Activities for Each Patch

==Foot ==Car ==Bus [ On/off bus [l On/off car
M Sleep = Work [ Visit l Shopping = Dining

image from: D. Fox
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Places by Clustering Significant
Activities

==Foot ==Car  ==Bus [ On/off bus [l On/off car
N Sleep = Work [ Visit ll Shopping = Dining

image from: D. Fox 58



Improved Place Finding

10

10 min —> Threshold method
O Our model

- min
5 min

False negative

| | | 1 min
0 10 20 30 40
False positive

= New model clearly outperforms the threshold
method
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Summary of a Day

Time

Activity and transportation

8:15am - 8:34am

Drive from home | to parking lot 2, walk to workplace [;

8:34am - 5:44pm

Work at workplace 1;

S:44pm - 6:54pm

Walk from workplace 1 to parking lot 2, drive to friend’s place 3;

6:54pm - 6:56pm

Pick up/drop off at friend 3’s place;

6:56pm - 7:15pm

Drive from friend 3’s place to other place 5:

9:01pm - 9:20pm

Drive from other place 5 to friend 3’s place:

9:20pm - 9:21pm

Pick up/drop off at friend 3’s place:

9:21pm - 9:50pm

Drive from friend 3’s place to home 1

9:50pm - 8:22am

Sleep at home 1.

« Most likely sequence of activities and places
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Summary

« Location-based activity recognition is
possible

» Graph-based representations are well suited
to compactly represent and learn typical
pehavior

« Hierarchical graphical models (DBN, CRF)
powerful tools for bridging the gap between
continuous sensor data, low-level activities,
and abstract states

« Conditional Random Fields can handle high-
dimensional / dependent feature vectors
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Further Reading

= L. Liao, D. Fox, H. Kautz

Extracting Places and Activities from GPS Traces
Using Hierarchical Conditional Random Fields
Int. Journal of Robotics Research, 2007

= L. Liao, D. J. Patterson, D. Fox, H. Kautz

Learning and Inferring Transportation Routines
Journal Artificial Intelligence, 2007
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