
Albert-Ludwigs-Universität Freiburg Institut für Informatik
Lecture: Robot Mapping
Winter term 2012 PD Dr. Cyrill Stachniss

Sheet 1
Topics: Octave

Submission deadline: Nov 5, 2012
Submit to: robotmappingtutors@informatik.uni-freiburg.de

General Notice

The exercises should be solved in groups of two students. In general, assignments
will be published on Monday and should be submitted on the following Monday
before class at the latest. Programming exercises should be submitted via email.

We will be using Octave for the programming exercises. Octave is a command line
program for solving numerical computations. Octave is mostly compatible with
MATLAB and is freely available from www.octave.org. It is available for Linux,
Mac OS, and Windows. Install Octave on your system in order to solve the pro-
gramming assignments. A quick guide to Octave is given in the Octave cheat sheet
which is available on the website of this lecture.

Exercise 1: Getting familiar with Octave

The purpose of this exercise is to familiarize yourself with Octave and learn ba-
sic commands and operations that you will need when solving the programming
exercises throughout this course.

Go through the provided Octave cheat sheet and try out the different commands.
Ask for help whenever you need it. As pointed out in the sheet, a very useful Octave
command is help. Use it to get information about the correct way to call any Octave
function.

Exercise 2: Implementing an odometry model

Implement an Octave function to compute the pose of a robot based on given odom-
etry commands and its previous pose. Do not consider the motion noise here.

For this exercise, we provide you with a small Octave framework for reading log files
and to visualize results. To use it, call the main.m script. This starts the main loop
that computes the pose of the robot at each time step and plots it in the map. Inside
the loop, the function motion command is called to compute the pose of the robot.
Implement the missing parts in the file motion command.m to compute the pose xt

given xt−1 and the odometry command ut. These vectors are in the following form:

1

www.octave.org


xt =

 x
y
θ

 ut =

 δrot1
δtrans
δrot2

 ,

where δrot1 is the first rotation command, δtrans is the translation command, and
δrot2 is the second rotation command. The pose is represented by the 3× 1 vector x
in motion model.m. The odometry values can be accessed from the struct u using
u.r1, u.t, and u.r2 respectively.

Compute the new robot pose according to the following motion model:

xt = xt−1 + δtrans cos(θt−1 + δrot1)
yt = yt−1 + δtrans sin(θt−1 + δrot1)
θt = θt−1 + δrot1 + δrot2

Test your implementation by running the main.m script. The script will generate
a plot of the new robot pose at each time step and save an image of it in the
plots directory. You can generate an animation from the saved images using ffmpeg
or mencoder. With ffmpeg you can use the following command to generate the
animation from inside the plots directory:

ffmpeg -r 10 -b 500000 -i odom %03d.png odom.mp4

2


