
Albert-Ludwigs-Universität Freiburg, Institut für Informatik
PD Dr. Cyrill Stachniss
Lecture: Robot Mapping
Winter term 2012

Sheet 2
Topic: Extended Kalman Filter SLAM

Submission deadline: Nov. 12th for Exercises 1 and 2, Nov. 19th for Exercise 3
Submit to: robotmappingtutors@informatik.uni-freiburg.de

Exercise 1: Bayes Filter and EKF

(a) Describe briefly the two main steps of the Bayes filter in your own words.

(b) Describe briefly the meaning of the following probability density functions:
p(xt | ut, xt−1), p(zt | xt), and bel(xt), which are processed by the Bayes filter.

(c) Specify the (normal) distributions that correspond to the above mentioned
three terms in EKF SLAM.

(d) Explain in a few sentences all of the components of the EKF SLAM algorithm,
i. e., µt, Σt, g, Gx

t , Gt, R
x
t , Rt, h, Ht, Qt, Kt and why they are needed. Specify

the dimensionality of these components.

Exercise 2: Jacobians

(a) Derive the Jacobian matrix Gx
t of the noise-free motion function g with respect

to the pose of the robot. Use the odometry motion model as in exercise sheet 1: xt
yt
θt

 =

 xt−1

yt−1

θt−1

+

 δtrans cos(θt−1 + δrot1)
δtrans sin(θt−1 + δrot1)

δrot1 + δrot2

 .

Do not use Octave for this part of the exercise.

(b) Derive the Jacobian matrix lowH i
t of the noise-free sensor function h corre-

sponding to the ith measurement:

h(µ̄t, j) = zit =

(
rit
φit

)
=

(√
(µ̄j,x − µ̄t,x)2 + (µ̄j,y − µ̄t,y)2

atan2(µ̄j,y − µ̄t,y, µ̄j,x − µ̄t,x)− µ̄t,θ

)
,

where (µ̄j,x, µ̄j,y)
T is the pose of the jth landmark, (µ̄t,x, µ̄t,y, µ̄t,θ)

T is the pose
of the robot at time t, and rit and φit are respectively the observed range and
bearing of the landmark. Do not use Octave for this part of the exercise.

Hint: use ∂
∂x

atan2(y, x) = −y
x2+y2

, and ∂
∂y

atan2(y, x) = x
x2+y2

.

1

Exercise 3: Implement an EKF SLAM System

Implement an extended Kalman filter SLAM (EKF SLAM) system. To support this
task, we provide a small Octave framework (see course website). The framework
contains the following folders:

data contains files representing the world definition and sensor readings.

octave contains the EKF SLAM framework with stubs to complete.

plots this folder is used to store images.

The below mentioned tasks should be implemented inside the framework in the
directory octave by completing the stubs.

After implementing the missing parts, you can run the EKF SLAM system. To do
that, change into the directory octave and launch Octave. Type ekf slam to start
the main loop (this may take some time). The program plots the current belief of
the robot (pose and landmarks) in the directory plots. You can use the images
for debugging and to generate an animation. For example, you can use ffmpeg from
inside the plots directory as follows:

ffmpeg -r 10 -b 500000 -i ekf_%03d.png ekf_slam.mp4

(a) Implement the prediction step of the EKF SLAM algorithm in the file
prediction step.m. Use the Jacobian Gx

t you derived above to construct the
full Jacobian matrix Gt. For the noise in the motion model, assume

Rx
t =

 0.1 0 0
0 0.1 0
0 0 0.01

 .

(b) Implement the correction step in the file correction step.m. The argument
z of this function is a struct array containing m landmark observations made
at time step t. Each observation z(i) has an id z(i).id, a range z(i).range, and
a bearing z(i).bearing.

Iterate over all measurements (i = 1, . . . ,m) and compute H i
t using the Jaco-

bian you derived above. You should compute a block Jacobian matrix Ht by
stacking the H i

t matrices corresponding to the individual measurements. Use
it to compute the Kalman gain and update the system mean and covariance
after the for-loop. For the noise in the sensor model, assume that Qt is a
diagonal square matrix as follows

Qt =


0.01 0 0 . . .

0 0.01 0 . . .
0 0 0.01 . . .
...

...
...

. . .

 ∈ R2m×2m.

2

Some implementation tips:

• Turn off the visualization to speed up the computation by commenting out
the line plot state(... in the file ekf slam.m.

• While debugging, run the filter only for a few steps by replacing the for-loop
in ekf slam.m by something along the lines of for t = 1:50.

• The command repmat allows you to replicate a given matrix in many different
ways and is magnitudes faster than using for-loops.

• When converting implementations containing for-loops into a vectorized form
it often helps to draw the dimensions of the data involved on a sheet of paper.

• Many of the functions in Octave can handle matrices and compute values along
the rows or columns of a matrix. Some useful functions that support this are
sum, sqrt, and many others.

3

