Robot Mapping

Introduction to Robot Mapping

Cyrill Stachniss

What is Robot Mapping?

- **Robot** – a device, that moves through the environment
- **Mapping** – modeling the environment

What is SLAM?

- Computing the robot’s pose and the map of the environment at the same time
 - **Localization**: estimating the robot’s location
 - **Mapping**: building a map
 - **SLAM**: building a map and locating the robot simultaneously

Related Terms

- State Estimation
- Localization
- Mapping
- SLAM
- Navigation
- Motion Planning
Localization Example
- Estimate the robot’s poses given landmarks

Mapping Example
- Estimate the landmarks given the robot’s poses

SLAM Example
- Estimate the robot’s poses and the landmarks at the same time

The SLAM Problem
- SLAM is a **chicken-or-egg** problem:
 → a map is needed for localization and
 → a pose estimate is needed for mapping
SLAM is Relevant

- It is considered a fundamental problem for truly autonomous robots
- SLAM is the basis for most navigation systems

SLAM Applications

- SLAM is central to a range of indoor, outdoor, in-air and underwater applications for both manned and autonomous vehicles.

Examples:

- At home: vacuum cleaner, lawn mower
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization

SLAM Showcase – Mint

Courtesy of Evolution Robotics, H. Durrant-Whyte, NASA, S. Thrun

Courtesy of Evolution Robotics (now iRobot)
Probabilistic Approaches

- Uncertainty in the robot’s motions and observations
- Use the probability theory to explicitly represent the uncertainty

Definition of the SLAM Problem

Given
- The robot’s controls
 \[u_1:T = \{u_1, u_2, u_3, \ldots, u_T\} \]
- Observations
 \[z_{1:T} = \{z_1, z_2, z_3, \ldots, z_T\} \]

Wanted
- Map of the environment
 \[m \]
- Path of the robot
 \[x_{0:T} = \{x_0, x_1, x_2, \ldots, x_T\} \]
In Probabilistic Terms

Estimate the robot’s path and the map

\[
p(x_{0:T}, m \mid z_{1:T}, u_{1:T})
\]

distribution path map given observations controls

Full SLAM vs. Online SLAM

- Full SLAM estimates the entire path
 \[
p(x_{0:T}, m \mid z_{1:T}, u_{1:T})
\]
- Online SLAM seeks to recover only the most recent pose
 \[
p(x_t, m \mid z_{1:t}, u_{1:t})
\]

Graphical Model

\[
p(x_{0:T}, m \mid z_{1:T}, u_{1:T})
\]

Graphical Model of Online SLAM

\[
p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1})
\]
Online SLAM

- Online SLAM means marginalizing out the previous poses

\[p(x_t, m \mid z_{1:t}, u_{1:t}) = \int_{x_0} \ldots \int_{x_{t-1}} p(x_0:t, m \mid z_{1:t}, u_{1:t}) \, dx_{t-1} \ldots \, dx_0 \]

- Integrations are typically done recursively, one at a time

Graphical Model of Online SLAM

Why is SLAM a hard problem?

1. Robot path and map are both unknown

Why is SLAM a hard problem?

- The mapping between observations and the map is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)
Taxonomy of the SLAM Problem
Volumetric vs. feature-based SLAM

Taxonomy of the SLAM Problem
Topologic vs. geometric maps

Taxonomy of the SLAM Problem
Known vs. unknown correspondence

Taxonomy of the SLAM Problem
Static vs. dynamic environments
Taxonomy of the SLAM Problem

Small vs. large uncertainty

![Diagram](image1.png)

Taxonomy of the SLAM Problem

Active vs. passive SLAM

![Diagram](image2.png)

Image courtesy by Petter Duvander

Taxonomy of the SLAM Problem

Any-time and any-space SLAM

![Robot](image3.png)

Taxonomy of the SLAM Problem

Single-robot vs. multi-robot SLAM

![Robots](image4.png)
Approaches to SLAM

- Large variety of different SLAM approaches have been proposed
- Most robotics conferences dedicate multiple tracks to SLAM
- The majority uses probabilistic concepts
- History of SLAM dates back to the mid-eighties

SLAM History by Durrant-Whyte

- 1985/86: Smith et al. and Durrant-Whyte describe geometric uncertainty and relationships between features or landmarks
- 1986: Discussions on how to do the SLAM problem at ICRA; key paper by Smith, Self and Cheeseman
- 1990-95: Kalman-filter based approaches
- 1995: SLAM acronym coined at ISRR’95
- 1995-1999: Convergence proofs & first demonstrations of systems
- 2000: Wide interest in SLAM started

Three Main Paradigms

Kalman filter Particle filter Graph-based

Motion and Observation Model

"Motion model"

"Observation model"
Motion Model

- The motion model describes the relative motion of the robot

$$ p(x_t \mid x_{t-1}, u_t) $$

Motion Model Examples

- Gaussian model

- Non-Gaussian model

Standard Odometry Model

- Robot moves from \((\bar{x}, \bar{y}, \bar{\theta})\) to \((\bar{x}', \bar{y}', \bar{\theta}')\)

- Odometry information \(u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})\)

\[
\begin{align*}
\delta_{trans} &= \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2} \\
\delta_{rot1} &= \text{atan}2(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta} \\
\delta_{rot2} &= \bar{\theta}' - \bar{\theta} - \delta_{rot1}
\end{align*}
\]

More on Motion Models

- Course: Introduction to Mobile Robotics, Chapter 6

- Thrun et al. “Probabilistic Robotics”, Chapter 5
Observation Model

- The observation or sensor model relates measurements with the robot’s pose

\[p(z_t \mid x_t) \]

distribution observation given pose

Observation Model Examples

- Gaussian model

- Non-Gaussian model

More on Observation Models

- Course: Introduction to Mobile Robotics, Chapter 7
- Thrun et al. “Probabilistic Robotics”, Chapter 6

Summary

- Mapping is the task of modeling the environment
- Localization means estimating the robot’s pose
- SLAM = simultaneous localization and mapping
- Full SLAM vs. Online SLAM
- Rich taxonomy of the SLAM problem
Literature

SLAM Overview

- Springer “Handbook on Robotics”, Chapter on Simultaneous Localization and Mapping (1st Ed: Chap. 37.1-37.2)

On motion and observation models

- Thrun et al. “Probabilistic Robotics”, Chapters 5 & 6
- Course: Introduction to Mobile Robotics, Chapters 6 & 7