Robot Mapping

Introduction to Robot Mapping

Cyrill Stachniss

1

3

What is Robot Mapping?

- Robot a device, that moves through the environment
- **Mapping** modeling the environment

2

Related Terms

State Estimation

Localization

Mapping

SLAM

Navigation

Motion Planning

What is SLAM?

- Computing the robot's pose and the map of the environment at the same time
- Localization: estimating the robot's location
- Mapping: building a map
- **SLAM:** building a map and locating the robot simultaneously

-

Localization Example

Estimate the robot's poses given landmarks

5

7

Mapping Example

 Estimate the landmarks given the robot's poses

6

SLAM Example

 Estimate the robot's poses and the landmarks at the same time

The SLAM Problem

- SLAM is a chicken-or-egg problem:
 - → a map is needed for localization and
 - → a pose estimate is needed for mapping

SLAM is Relevant

- It is considered a fundamental problem for truly autonomous robots
- SLAM is the basis for most navigation systems

autonomous navigation

9

SLAM Applications

 SLAM is central to a range of indoor, outdoor, in-air and underwater applications for both manned and autonomous vehicles.

Examples:

- At home: vacuum cleaner, lawn mower
- Air: surveillance with unmanned air vehicles
- Underwater: reef monitoring
- Underground: exploration of mines
- Space: terrain mapping for localization

10

SLAM Applications

Courtesy of Evolution Robotics, H. Durrant-Whyte, NASA, S. Thrun

SLAM Showcase - Mint

Courtesy of Evolution Robotics (now iRobot)

SLAM Showcase - EUROPA

Mapping Freiburg CS Campus

13

Probabilistic Approaches

- Uncertainty in the robot's motions and observations
- Use the probability theory to explicitly represent the uncertainty

Definition of the SLAM Problem

Given

• The robot's controls

$$u_{1:T} = \{u_1, u_2, u_3 \dots, u_T\}$$

Observations

$$z_{1:T} = \{z_1, z_2, z_3 \dots, z_T\}$$

Wanted

- Map of the environment
- Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2 \dots, x_T\}$$

In Probabilistic Terms

Estimate the robot's path and the map

17

Full SLAM vs. Online SLAM

Full SLAM estimates the entire path

$$p(x_{0:T}, m \mid z_{1:T}, u_{1:T})$$

 Online SLAM seeks to recover only the most recent pose

$$p(x_t, m \mid z_{1:t}, u_{1:t})$$

Graphical Model

 $p(x_{0:T}, m \mid z_{1:T}, u_{1:T})$

18

Graphical Model of Online SLAM

$$p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1})$$

Online SLAM

 Online SLAM means marginalizing out the previous poses

$$p(x_t, m \mid z_{1:t}, u_{1:t}) = \int_{x_0} \dots \int_{x_{t-1}} p(x_{0:t}, m \mid z_{1:t}, u_{1:t}) dx_{t-1} \dots dx_0$$

 Integrations are typically done recursively, one at at time **Graphical Model of Online SLAM**

$$p(x_{t+1}, m \mid z_{1:t+1}, u_{1:t+1}) = \int_{x_0} \dots \int_{x_t} p(x_{0:t+1}, m \mid z_{1:t+1}, u_{1:t+1}) dx_t \dots dx_0$$

22

Why is SLAM a hard problem?

1. Robot path and map are both unknown

2. Map and pose estimates correlated

Why is SLAM a hard problem?

- The mapping between observations and the map is unknown
- Picking wrong data associations can have catastrophic consequences (divergence)

24

23

Taxonomy of the SLAM Problem

Volumetric vs. feature-based SLAM

25

Taxonomy of the SLAM Problem

Topologic vs. geometric maps

26

Taxonomy of the SLAM Problem

Known vs. unknown correspondence

Taxonomy of the SLAM Problem

Static vs. dynamic environments

Taxonomy of the SLAM Problem

Small vs. large uncertainty

29

Taxonomy of the SLAM Problem

Active vs. passive SLAM

illage courtesy by Petter Duvalide

30

Taxonomy of the SLAM Problem

Any-time and any-space SLAM

Taxonomy of the SLAM Problem

Single-robot vs. multi-robot SLAM

31

Approaches to SLAM

- Large variety of different SLAM approaches have been proposed
- Most robotics conferences dedicate multiple tracks to SLAM
- The majority uses probabilistic concepts
- History of SLAM dates back to the mid-eighties

33

SLAM History by Durrant-Whyte

- 1985/86: Smith et al. and Durrant-Whyte describe geometric uncertainty and relationships between features or landmarks
- 1986: Discussions on how to do the SLAM problem at ICRA; key paper by Smith, Self and Cheeseman
- 1990-95: Kalman-filter based approaches
- 1995: SLAM acronym coined at ISRR'95
- 1995-1999: Convergence proofs & first demonstrations of systems
- 2000: Wide interest in SLAM started

34

Three Main Paradigms

Kalman filter

Particle filter

Graphbased

Motion and Observation Model

35

Motion Model

 The motion model describes the relative motion of the robot

37

39

Motion Model Examples

Gaussian model

Non-Gaussian model

38

Standard Odometry Model

- Robot moves from $(\bar{x}, \bar{y}, \bar{\theta})$ to $(\bar{x}', \bar{y}', \bar{\theta}')$
- Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$

$$\delta_{trans} = \sqrt{(\bar{x}' - \bar{x})^2 + (\bar{y}' - \bar{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$

$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

More on Motion Models

- Course: Introduction to Mobile Robotics, Chapter 6
- Thrun et al. "Probabilistic Robotics", Chapter 5

Observation Model

 The observation or sensor model relates measurements with the robot's pose

41

Observation Model Examples

Gaussian model

Non-Gaussian model

42

More on Observation Models

- Course: Introduction to Mobile Robotics, Chapter 7
- Thrun et al. "Probabilistic Robotics", Chapter 6

Summary

- Mapping is the task of modeling the environment
- Localization means estimating the robot's pose
- SLAM = simultaneous localization and mapping
- Full SLAM vs. Online SLAM
- Rich taxonomy of the SLAM problem

Literature

SLAM Overview

 Springer "Handbook on Robotics", Chapter on Simultaneous Localization and Mapping (1st Ed: Chap. 37.1-37.2)

On motion and observation models

- Thrun et al. "Probabilistic Robotics", Chapters 5 & 6
- Course: Introduction to Mobile Robotics, Chapters 6 & 7