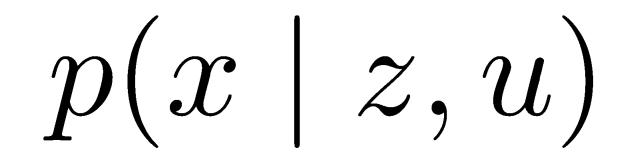
Robot Mapping

A Short Introduction to the Bayes Filter and Related Models

Cyrill Stachniss

State Estimation

- Estimate the state $x \mbox{ of a system given}$ observations $z \mbox{ and controls } u$
- Goal:



 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$

Definition of the belief

 $bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$ = $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$

Bayes' rule

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

= $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$
= $\eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

= $\eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$
= $\eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$
= $\eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \frac{1}{p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}}$

Law of total probability

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

Markov assumption

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t})$$

$$= \eta p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) p(x_t \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) p(x_{t-1} \mid z_{1:t-1}, u_{1:t})$$

$$= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) dx_{t-1}$$

$$= \eta p(z_t \mid x_t) \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) dx_{t-1}$$

Markov assumption

$$\begin{aligned} bel(x_t) &= p(x_t \mid z_{1:t}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t, z_{1:t-1}, u_{1:t}) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ p(x_t \mid z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, z_{1:t-1}, u_{1:t}) \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ p(x_{t-1} \mid z_{1:t-1}, u_{1:t-1}) \ dx_{t-1} \\ &= \eta \ p(z_t \mid x_t) \ \int_{x_{t-1}} p(x_t \mid x_{t-1}, u_t) \ bel(x_{t-1}) \ dx_{t-1} \end{aligned}$$

Recursive term

Prediction and Correction Step

- Bayes filter can be written as a two step process
- Prediction step

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$$

Motion and Observation Model

Prediction step

$$\overline{bel}(x_t) = \int \underline{p(x_t \mid u_t, x_{t-1})} \ bel(x_{t-1}) \ dx_{t-1}$$

motion model

Correction step

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$$

sensor or observation model

Different Realizations

- The Bayes filter is a **framework** for recursive state estimation
- There are different realizations

Different properties

- Linear vs. non-linear models for motion and observation models
- Gaussian distributions only?
- Parametric vs. non-parametric filters

In this Course

Kalman filter & friends

- Gaussians
- Linear or linearized models

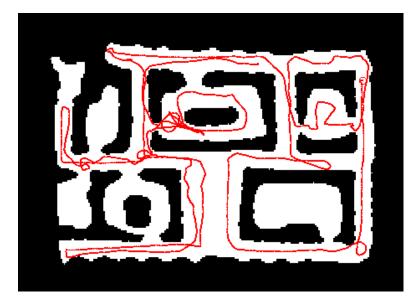
Particle filter

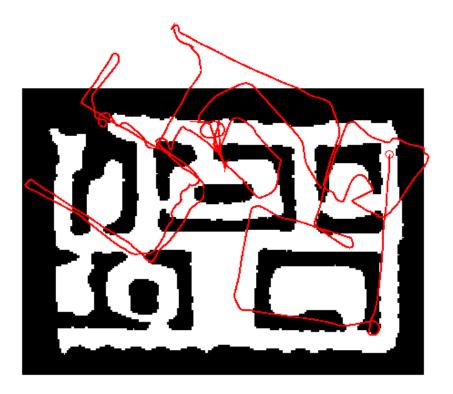
- Non-parametric
- Arbitrary models (sampling required)

Motion Model $\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) bel(x_{t-1}) dx_{t-1}$

Robot Motion Models

- Robot motion is inherently uncertain
- How can we model this uncertainty?





Probabilistic Motion Models

 Specifies a posterior probability that action u carries the robot from x to x'.

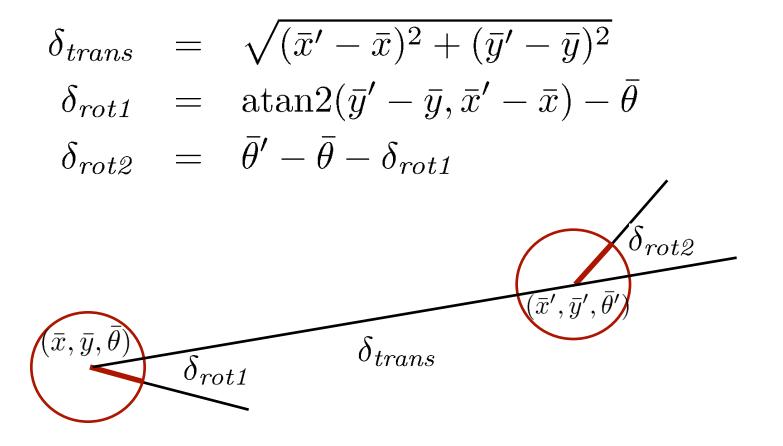
$$p(x_t \mid u_t, x_{t-1})$$

Typical Motion Models

- In practice, one often finds two types of motion models:
 - Odometry-based
 - Velocity-based
- Odometry-based models for systems that are equipped with wheel encoders
- Velocity-based when no wheel encoders are available

Odometry Model

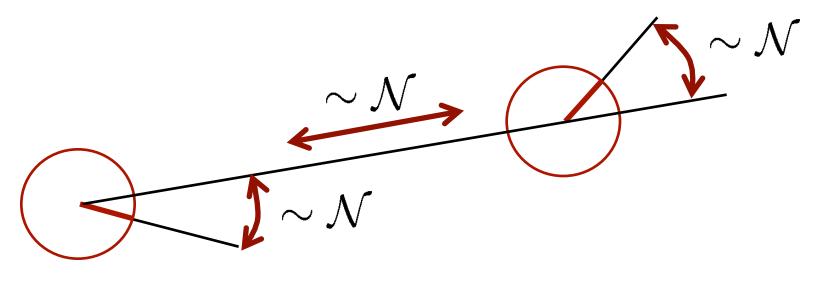
- Robot moves from $(\bar{x}, \bar{y}, \bar{ heta})$ to $(\bar{x}', \bar{y}', \bar{ heta}')$
- Odometry information $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$



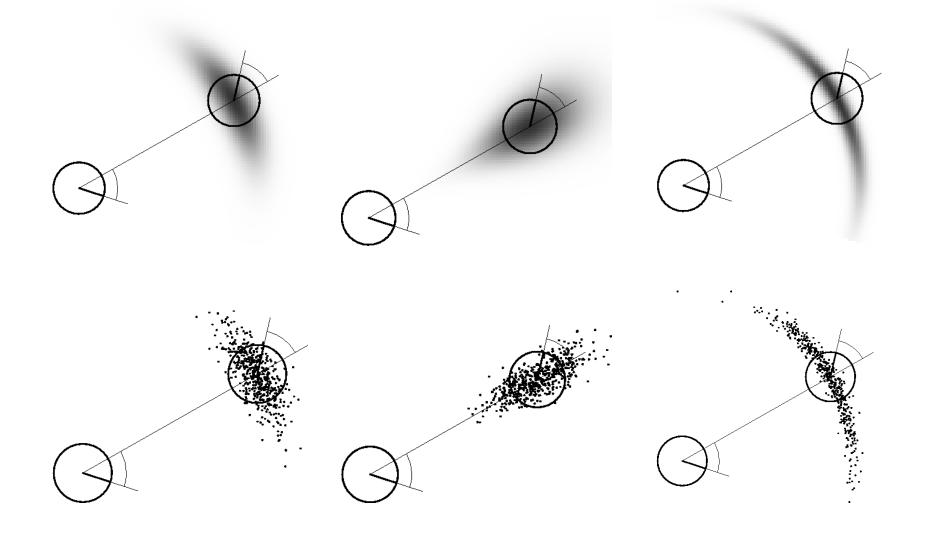
Probability Distribution

- Noise in odometry $u = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})$
- Example: Gaussian noise

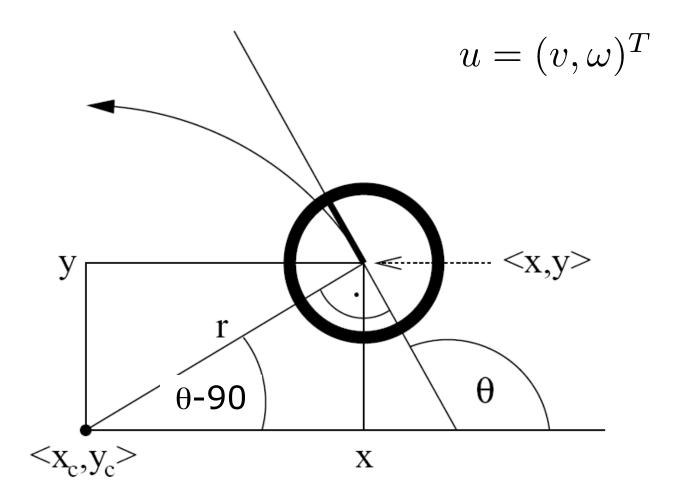
 $u \sim \mathcal{N}(0, \Sigma)$



Examples (Odometry-Based)



Velocity-Based Model



Motion Equation

- Robot moves from (x, y, θ) to (x', y', θ')
- Velocity information $u = (v, \omega)$

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \omega\Delta t \end{pmatrix}$$

Problem of the Velocity-Based Model

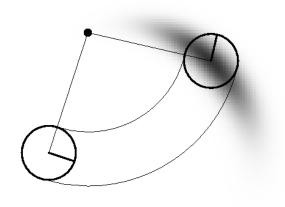
- Robot moves on a circle
- The circle constrains the final orientation
- Fix: introduce an additional noise term on the final orientation

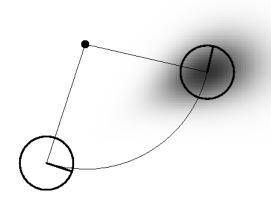
Motion Including 3rd Parameter

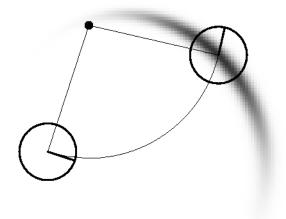
$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v}{\omega}\sin\theta + \frac{v}{\omega}\sin(\theta + \omega\Delta t) \\ \frac{v}{\omega}\cos\theta - \frac{v}{\omega}\cos(\theta + \omega\Delta t) \\ \omega\Delta t + \gamma\Delta t \end{pmatrix}$$

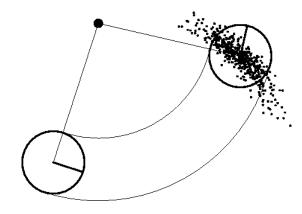
Term to account for the final rotation

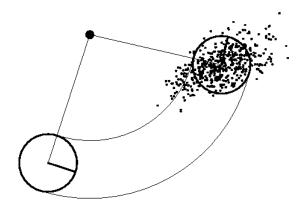
Examples (Velocity-Based)

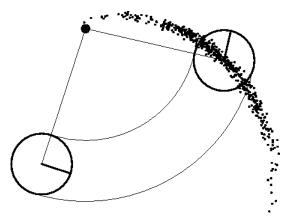












Sensor Model

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$$

Model for Laser Scanners

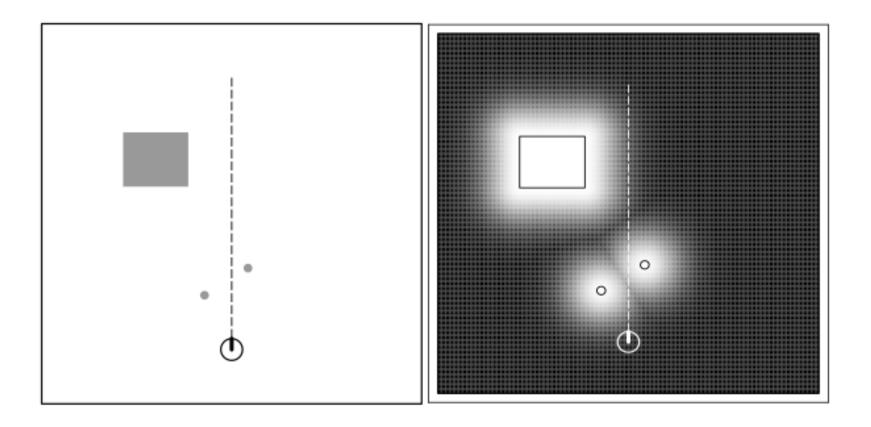
Scan z consists of K measurements.

$$z_t = \{z_t^1, \dots, z_t^k\}$$

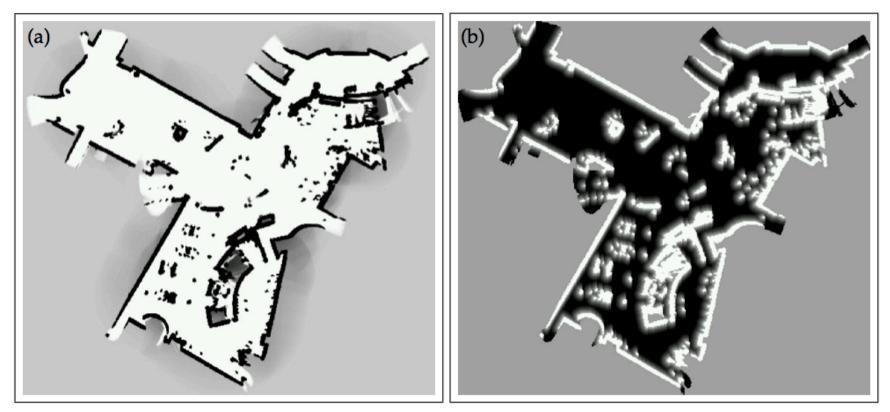
 Individual measurements are independent given the robot position

$$p(z_t \mid x_t, m) = \prod_{i=1}^k p(z_t^i \mid x_t, m)$$

Beam-Endpoint Model



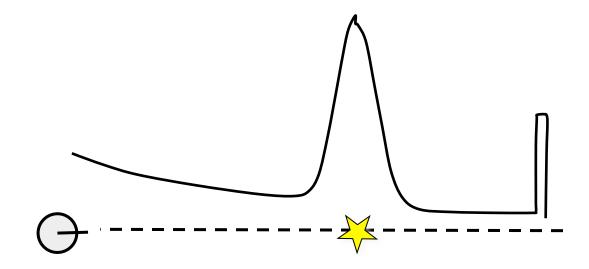
Beam-Endpoint Model



likelihood field

Ray-cast Model

- Ray-cast model considers the first obstacle long the line of sight
- Mixture of four models



Feature-based Model for Range-Bearing Sensors

- Range-bearing $z_t^i = (r_t^i, \phi_t^i)^T$
- Robot's pose $(x, y, \theta)^T$
- Observation of feature *j* at location (*m_{j,x}*, *m_{j,y}*)^T

$$\begin{pmatrix} r_t^i \\ \phi_t^i \end{pmatrix} = \begin{pmatrix} \sqrt{(m_{j,x} - x)^2 + (m_{j,y} - y)^2} \\ \operatorname{atan2}(m_{j,y} - y, m_{j,x} - x) - \theta \end{pmatrix} + Q_t$$

Summary

- Bayes filter is a framework for state estimation
- Motion and sensor model are the central models in the Bayes filter
- Standard models for robot motion and laser-based range sensing

Literature

On the Bayes filter

- Thrun et al. "Probabilistic Robotics", Chapter 2
- Course: Introduction to Mobile Robotics, Chapter 5

On motion and observation models

- Thrun et al. "Probabilistic Robotics", Chapters 5 & 6
- Course: Introduction to Mobile Robotics, Chapters 6 & 7