Robot Mapping

Extended Kalman Filter

Cyrill Stachniss %

Goal: Simultaneous Localization
and Mapping (SLAM)

= Building a map and locating the robot
in the map at the same time

= Chicken-or-egg problem

SLAM is a State Estimation
Problem

= Estimate the map and robot’s pose

= Bayes filter is one tool for state
estimation

= Prediction
W(xt) = /p(:z:t | ug, xe—1) bel(xi—1) dri—q

= Correction
bel(zs) =1 p(z | z¢) bel(xi_1)

Kalman Filter

= [t is a Bayes filter
= Estimator for the linear Gaussian case

= Optimal solution for linear models and
Gaussian distributions




Gaussians

= Everything is Gaussian

p(a) = det(2r%)F exp ( (0~ "5 @ — )
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Properties: Marginalization and
Conditioning

Tp

= Given <m ) p(z) = N

= The marginals are Gaussians

p(@a) =N plze) =N

= as well as the conditionals
plxg | 2p) =N pay | 20) =N

Linear Model

= The Kalman filter assumes a linear
transition and observation model

= Zero mean Gaussian noise

ry = Arxi—1 + Brup + €

2y = Cyzy + 0y

Components of a Kalman Filter

A Matrix (n x n) that describes how the state
t  evolves from ¢t — 1 to ¢ without controls or
noise.

Bt Matrix (n x [) that describes how the control
u¢ changes the state from¢ — 1 tot.

Ct Matrix (k x n) that describes how to map the
state z; to an observation z;.

€¢ Random variables representing the process
and measurement noise that are assumed to

5t be independent and normally distributed
with covariance R, and Q); respectively.




Linear Motion Model

= Motion under Gaussian noise leads to

p(xt | ug, wp—1) =7

Linear Motion Model

= Motion under Gaussian noise leads to

play | ug, xe—1) = det(27rRt)_%

1 —
exp (_E(xt — A1 — Byug) TRy Ny — Aggq — Bt“t))

= R; describes the noise of the motion
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Linear Observation Model

= Measuring under Gaussian noise leads
to

p(zt | iUt) =7
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Linear Observation Model

= Measuring under Gaussian noise leads
to

p(z | zy) = det(27er)_%
exp (_%(zt — tht)TQt_l(Zt — tht))

» (); describes the measurement noise
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief is always Gaussian

W(iﬂt) = /p(xt | ug, 2e—1) bel(wy—1) dwy—y

bel(xy) = n (2t | 1) bel(wp—1)

= Proof is non-trivial
(see Probabilistic Robotics, Sec. 3.2.4)
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Kalman Filter Algorithm

1: Kalman filter(u;—1, X1, us, 2¢):

2: fir = Ag pri—1 + By uy

3: it == At Et—l Ag‘ + Rt

4: Kt = it C;T(Ct it C;T + Qt)_l
5: pe = iy + Ki(2 - Cy fit)

6: Zt - (I — Kt Ct) Et

7 return fig, 24
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1D Kalman Filter Example (1)

| prediction ] measurement
correction |

5a

ws| . It's a weighted mean!

£ = E} 15 15

1D Kalman Filter Example (2)

prediction

20 = E B 10 3 ) =

E)

measurement

correction |
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Kalman Filter Assumptions

= Gaussian distributions and noise
= Linear motion and observation model

vy = Arxi—1 + Brug + €
Zt — CtSUt + (515

What if this is not the case?

Non-linear Dynamic Systems

= Most realistic problems (in robotics)
involve nonlinear functions

!

ry = g(up, Te—1) + € 24 = h(l‘t) + Oy
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Linearity Assumption Revisited Non-Linear Function
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Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?
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Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

Local linearization!
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EKF Linearization: First Order
Taylor Expansion

= Prediction:

Og(ug, piy—1)

g(ut,iﬂt—l) ~ Q(Ut,,ut—1) + 9y 1

= Correction: \

h(we) ~ h(fe) + ——

(-1 — pe—1)

Jacobian matrices
(w4 — fit)

23

Reminder: Jacobian Matrix
» Itis a non-square matrix n x m in general

= Given a vector-valued function
g1(x)
92(-’”)
g(z) = .
gm ()
= The Jacobian matrix is defined as

991 991 991

oxq Oxo T 0L,
992 992 992
G:E _ 83.31 85.02 o aﬂ.in
99m  Ogm 9gm

oxq Oxo T ox,, 24




Reminder: Jacobian Matrix

= It is the orientation of the tangent plane to
the vector-valued function at a given point

EKF Linearization: First Order
Taylor Expansion

= Prediction:
ag(uta,u't—l)

g(ug, we—1) =~ g(ug, pre—1) + EI (g1 — pe—1)
N——
= Gt
= Correction:
h(ze) ~ h(f:) + Oh(p) (20 — fir) Linear functions!
i i ox
. Gene_rallzes the gradient of a scalar valued t /
function = H,
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EKF Linearization (1)

EKF Linearization (2)
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EKF Linearization (3) Linearized Motion Model
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Linearized Observation Model

Extended Kalman Filter

. . Algorithm
= The linearized model leads to g
p(2t | x¢) = det (2mQ¢) 2 1: Extended_Kalman filter(u;—1,3:—1,us, 2¢):
1 - - \\T
P < 2 (2 = hlpe) = He (@ = fir)) 2: fie = g(ut, pe—1 A G
. A T
Qi (= — W) — Hy (0 — /It))) 3 Xe =Gy U1 Gy + Ry b b
linearize:(,i model 4: Kt — it H?(Ht it H;JLT + Qt)_l Ct < Ht
: : ot pe = i + Ki(2e — h(iiz))
(): describes the measurement noise 6: S, = (I — K, Hy) 5
7 return iy, 2
KF vs. EKF
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Extended Kalman Filter Literature

Summary

= Extension of the Kalman filter

= Ad-hoc solution to handle the non-
linearities

= Performs local linearizations

= Works well in practice for moderate
non-linearities

= Complexity: O(k** + n?)
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Kalman Filter and EKF

= Thrun et al.: “Probabilistic Robotics”,
Chapter 3

= Schoén and Lindsten: “Manipulating the
Multivariate Gaussian Density”

= Welch and Bishop: “Kalman Filter
Tutorial”
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