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Goal: Simultaneous Localization
and Mapping (SLAM)

= Building a map and locating the robot
in the map at the same time

= Chicken-or-egg problem




SLAM is a State Estimation
Problem

= Estimate the map and robot’s pose

= Bayes filter is one tool for state
estimation

» Prediction

bel(xy) = /p(:):t | ug, 1) bel(xi_1) dry_q

= Correction
bel(z) = n p(z | z¢) bel(zi—1)



Kalman Filter

= [t is a Bayes filter
= Estimator for the linear Gaussian case

= Optimal solution for linear models and
Gaussian distributions



Gaussians

= Everything is Gaussian
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Properties: Marginalization and
Conditioning

= Given ( o
€r =

Lb

) p(z) =N
= The marginals are Gaussians

p(xa,) =N p($b> =N

= as well as the conditionals
p(alxp) =N plEp | za) =N



Linear Model

= The Kalman filter assumes a linear
transition and observation model

= Zero mean Gaussian noise

Ty = Arxe_1 + Brus + €

<t — C’ta:t -+ 575



Components of a Kalman Filter

A Matrix (n X n) that describes how the state
t evolves from t — 1 to ¢ without controls or
noise.

Bt Matrix (n x 1) that describes how the control
u+ changes the state from¢ —1 to¢.

(', Matrix (k x n) that describes how to map the
state x; to an observation z;.

€+ Random variables representing the process
and measurement noise that are assumed to

04 beindependent and normally distributed
with covariance R; and (), respectively.



Linear Motion Model

= Motion under Gaussian noise leads to

p(zy | ug, wp—1) =7



Linear Motion Model

= Motion under Gaussian noise leads to

N~

play | ug, xe_q) = det(2nRy) ™

1 _
exXp <—§(ﬂi‘t — Ay — Btut)TRt 1(9675 — Ay — Btut)

» R; describes the noise of the motion

)
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Linear Observation Model

= Measuring under Gaussian noise leads
to

p(Zt | $t) =7
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Linear Observation Model

= Measuring under Gaussian noise leads
to

p(z: | ) = det(27Qy) 2

exp (—%(Zt — Cyx)" Qy (2 — Ctivt))

= (); describes the measurement noise
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Everything stays Gaussian

= Given an initial Gaussian belief, the
belief is always Gaussian

M(xt) — /p(xt ug, xpq) bel(xi_1) dry_q

bel(x¢) = n p(2e | 1) bel(wi—1)

» Proof is non-trivial
(see Probabilistic Robotics, Sec. 3.2.4)
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Kalman Filter Algorithm

Kalman_filter(u; 1,1, us, 2¢):

ey = A¢ -1 + Bt uy
Zt — At Zt—l A? —|— Rt

K; =% CH(Cy 3 CF + Q)
pe = piy + Ki(2e — Ct fig)

Zt — (I— Kt Ct) Zt

return fig, 2
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1D Kalman Filter Example (1)

_| prediction _ measurement
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correction

It's a weighted mean!
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Kalman Filter Assumptions

= Gaussian distributions and noise
= Linear motion and observation model

vy = Ayxi—1 + Byuy + €
<t — Ctili't - 5,5

What if this is not the case?
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Non-linear Dynamic Systems

= Most realistic problems (in robotics)

involve nonlinear functions

—’%3/

|

\

It = Q(Utaﬂft—l) + € 2t = h(ft) + 5t
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Linearity Assumption Revisited

6| 6
ply)= N(y;aw+b,a%o?) —y = ax+h
AR Mean of py) = Meanp
) 5
4
.
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Non-Linear Function

6 6
piy) Function g(x)
—— Gaussian of p{y) = Meanp
41 X Meanof piy) 4t \Q gip)
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Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?
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Non-Gaussian Distributions

= The non-linear functions lead to non-
Gaussian distributions

= Kalman filter is not applicable
anymore!

What can be done to resolve this?

Local linearization!
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EKF Linearization: First Order
Taylor Expansion

= Prediction:
Og(us, fhi—
g(utaxt—l) ~ g(ut,,ut_l) + g(at i 1)
. Tt—1
_.q,
= Correction: \

h(ze) = h(jie) +
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Reminder: Jacobian Matrix

= Jtis a non-square matrix n x m in general

= Given a vector-valued function

E)
ga\x
g(z) = :
\ gm(x) ) . .
= The Jacobian matrix is defined as
TR TR TR
e
ox1 Oxo oxn,
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Reminder: Jacobian Matrix

= Jt is the orientation of the tangent plane to
the vector-valued function at a given point

= Generalizes the gradient of a scalar valued
function
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EKF Linearization: First Order
Taylor Expansion

= Prediction:
0g(ug, Lhi—
g(us, Te—1) ~ g(ug, ie—1) + g(at i) (xp—1 — He—1)
_.q,
= Correction: \

h(z:) ~ h(fiy) + Linear functions!
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Linearity Assumption Revisited

6| 6
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Non-Linear Function
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EKF Linearization (1)
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EKF Linearization (2)
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EKF Linearization (3)
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Linearized Motion Model

= The linearized model leads to

1
2

p(ZCt ‘ Ut,ZCt_l) ~ det (2’7TR75)

1
exp ( — 5 (l‘t — g(ut,,ut_1) — Gy ($t—1 — Mt—l))T

Bt (w1 = glus, 1) = Go (w1 — 1))

\ .

linearized model

= R; describes the noise of the motion
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Linearized Observation Model
» The linearized model leads to

p(z | 24) = det (27Q;) ™2

1

exp ( -3 (2t — h(fie) — He (e — 1))"

Q7 ' (= (Mt) Hy (2 — ﬂtl))

linearized model

= (); describes the measurement noise
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Extended Kalman Filter

Algorithm
1: Extended_Kalman filter(u:_1,>¢ 1, us, 2¢):
2: e = g, fi—1
3: Zt — Gt Zt—l G;r -+ Rt
4. K,=%, HI (H, X H' + Q)" ' |Gt < Hy
3k pe = fir + K (2 —ﬁﬁgé__t))

0: Zt — (I — Kt Ht) Zt
7 return pis, 2

KF vs. EKF
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Extended Kalman Filter
Summary

= Extension of the Kalman filter

= Ad-hoc solution to handle the non-
linearities

= Performs local linearizations

= Works well in practice for moderate
non-linearities

= Complexity: O(k** + n?)
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