

Bayes Filter

- Recursive filter with prediction and correction step
- Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_{t-1})$$

Extended Kalman Filter Algorithm

1: **Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

3:
$$\Sigma_t = G_t \ \Sigma_{t-1} \ G_t^T + R_t$$

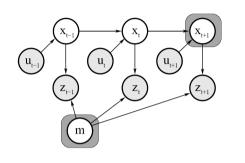
4:
$$K_t = \bar{\Sigma}_t \ H_t^T (H_t \ \bar{\Sigma}_t \ H_t^T + Q_t)^{-1}$$

- 5: $\mu_t = \bar{\mu}_t + K_t(z_t h(\bar{\mu}_t))$
- 6: $\Sigma_t = (I K_t H_t) \bar{\Sigma}_t$
- 7: return μ_t, Σ_t

EKF for Online SLAM

 The Kalman filter provides a solution to the online SLAM problem, i.e.

 $p(x_t, m \mid z_{1:t}, u_{1:t})$



EKF SLAM

5

7

- Application of the EKF to SLAM
- Estimate robot's pose and location of features in the environment
- Assumption: known correspondence
- State space is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose}}, \underbrace{m_{1,x}, m_{1,y}}_{\text{landmark 1}}, \dots, \underbrace{m_{n,x}, m_{n,y}}_{\text{landmark n}})^T$$

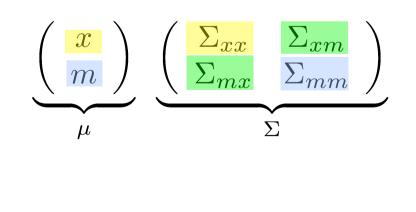
EKF SLAM: State Representation

- Map with *n* landmarks: (3+2*n*)-dimensional Gaussian
- Belief is represented by

(x	\ /	σ_{xx}	σ_{xy}	$\sigma_{x\theta}$	$\sigma_{xm_{1,x}}$	$\sigma_{xm_{1,y}}$		$\sigma_{xm_{n,x}}$	$\sigma_{xm_{n,y}}$
	y	1 1	σ_{yx}	σ_{yy}	$\sigma_{y\theta}$	$\sigma_{ym_{1,x}}$	$\sigma_{ym_{1,y}}$		$\sigma_{m_{n,x}}$	$\sigma_{m_{n,y}}$
	θ		$\sigma_{\theta x}$	$\sigma_{\theta y}$	$\sigma_{\theta\theta}$	$\sigma_{\theta m_{1,x}}$	$\sigma_{\theta m_{1,y}}$		$\sigma_{\theta m_{n,x}}$	$\sigma_{\theta m_{n,y}}$
	$m_{1,x}$		$\sigma_{m_{1,x}x}$		σ_{θ}	$\sigma_{m_{1,x}m_{1,x}}$	$\sigma_{m_{1,x}m_{1,y}}$		$\sigma_{m_{1,x}m_{n,x}}$	$\sigma_{m_{1,x}m_{n,y}}$
	$m_{1,y}$		$\sigma_{m_{1,y}x}$	$\sigma_{m_{1,y}y}$	$\sigma_{ heta}$	$\sigma_{m_{1,y}m_{1,x}}$	$\sigma_{m_{1,y}m_{1,y}}$	• • •	$\sigma_{m_{1,y}m_{n,x}}$	$\sigma_{m_{1,y}m_{n,y}}$
	÷		÷	÷	÷	÷	÷	·	:	÷
	$m_{n,x}$		$\sigma_{m_{n,x}x}$	$\sigma_{m_{n,x}y}$	$\sigma_{ heta}$	$\sigma_{m_{n,x}m_{1,x}}$	$\sigma_{m_{n,x}m_{1,y}}$		$\sigma_{m_{n,x}m_{n,x}}$	$\sigma_{m_{n,x}m_{n,y}}$
7	$m_{n,y}$		$\sigma_{m_{n,y}x}$		σ_{θ}	$\sigma_{m_{n,y}m_{1,x}}$	$\sigma_{m_{n,y}m_{1,y}}$	• • •	$\sigma_{m_{n,y}m_{n,x}}$	$\sigma_{m_{n,y}m_{n,y}}$ /
_	$\widetilde{\mu}$						Σ			

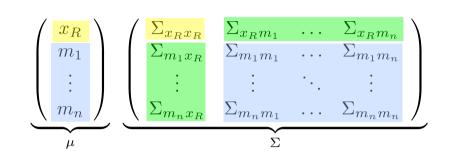
EKF SLAM: State Representation

- Even more compactly (note: $x_R
ightarrow x$)



EKF SLAM: State Representation

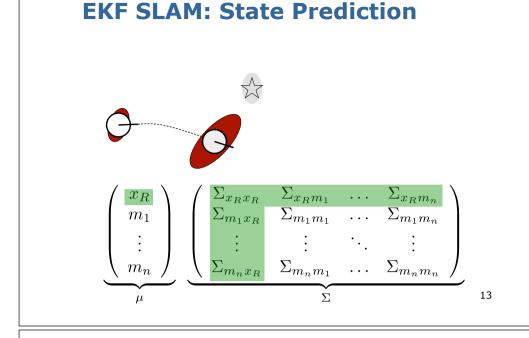
More compactly



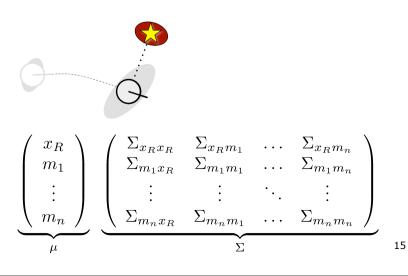
10

EKF SLAM: Filter Cycle

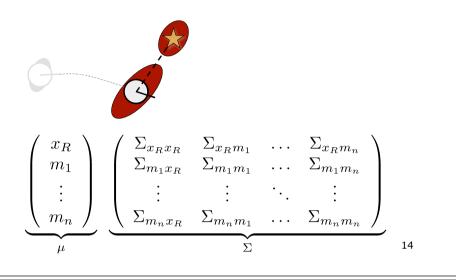
- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update



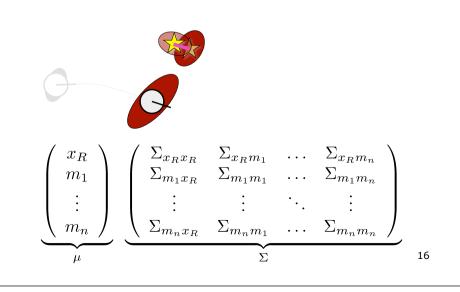
EKF SLAM: Obtained Measurement



EKF SLAM: Measurement Prediction



EKF SLAM: Data Association



EKF-SLAM: Concrete Example

Setup

- Robot moves in the plane
- Velocity-based motion model
- Robot observes point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

18

Initialization

- Robot starts in its own reference frame (all landmarks unknown)
- 2N+3 dimensions

$$\mu_{0} = (0 \ 0 \ 0 \ \dots \ 0)^{T}$$

$$\Sigma_{0} = \begin{pmatrix} 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \\ \vdots \ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ 0 \ 0 \ \dots \ \infty \end{pmatrix}$$

Extended Kalman Filter Algorithm

1: **Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$

4:
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$

7: return μ_t, Σ_t

Prediction Step (Motion)

- Goal: Update state space based on the robot's motion
- Robot motion in the plane

$$\begin{pmatrix} x'\\ y'\\ \theta' \end{pmatrix} = \begin{pmatrix} x\\ y\\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t)\\ \frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t)\\ \omega_t\Delta t \end{pmatrix}$$

 $g_{x,y,\theta}(u_t,\!(x,\!y,\!\theta)^T)$

• How to map that to the 2N+3 dim space?

21

Extended Kalman Filter Algorithm

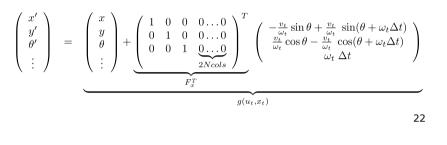
1: **Extended_Kalman_filter**($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ **DONE** 3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ 5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ 6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ 7: return μ_t, Σ_t

Update the State Space

From the motion in the plane

 $\begin{pmatrix} x'\\y'\\\theta' \end{pmatrix} = \begin{pmatrix} x\\y\\\theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t}\sin\theta + \frac{v_t}{\omega_t}\sin(\theta + \omega_t\Delta t)\\\frac{v_t}{\omega_t}\cos\theta - \frac{v_t}{\omega_t}\cos(\theta + \omega_t\Delta t)\\\omega_t\Delta t \end{pmatrix}$

to the 2N+3 dimensional space

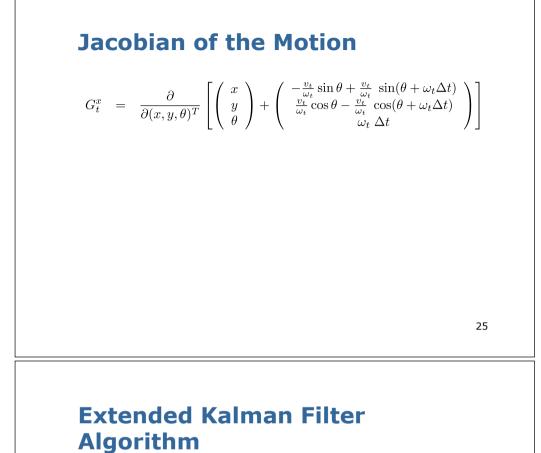


Update Covariance

 The function g only affects the robot's motion and not the landmarks

```
Jacobian of the motion (3x3)

G_t = \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix}
Identity (2N x 2N)
```



1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ -DONE
3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ -DONE
4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t

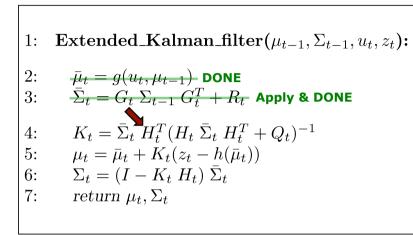
This Leads to the Update

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE
3: $\Rightarrow \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$
 $= \begin{pmatrix} G_t^x & 0\\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{xx} & \Sigma_{xm}\\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix} \begin{pmatrix} (G_t^x)^T & 0\\ 0 & I \end{pmatrix} + R_t$
 $= \begin{pmatrix} G_t^x \Sigma_{xx} (G_t^x)^T & G_t^x \Sigma_{xm}\\ (G_t^x \Sigma_{xm})^T & \Sigma_{mm} \end{pmatrix} + R_t$
26

EKF SLAM – Prediction

$$\begin{aligned} \mathbf{EKF_SLAM_Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, c_t, R_t): \\ 2: \quad F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} \\ 3: \quad \bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \\ 4: \quad G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x \\ 5: \quad \bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + \underbrace{F_x^T R_t^x F_x}_{R_t} \end{aligned}$$

Extended Kalman Filter Algorithm



Range-Bearing Observation

- Range-bearing observation $z_t^i = (r_t^i, \phi_t^i)^T$
- If landmark has not been observed

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

robot's

location

observed estimated location of landmark j

relative measurement

EKF SLAM – Correction

- Known data association
- $c_t^i = j$: *i*-th measurement observes the landmark with index *i*
- Initialize landmark if unobserved
- Compute the expected observation
- Compute the Jacobian of h
- Then, proceed with computing the Kalman gain

30

Expected Observation

 Compute expected observation according to the current estimate

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$
$$q = \delta^T \delta$$
$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

29

Jacobian for the Observation

• Based on
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

 $q = \delta^T \delta$
 $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

Next Steps as Specified...

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE
3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ DONE
4: $\Longrightarrow K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$
6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$
7: return μ_t, Σ_t

Jacobian for the Observation

Use the computed Jacobian

$${}^{\text{low}}H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

Extended Kalman Filter Algorithm

1: Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ DONE 3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ DONE 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ Apply & DONE 5: $\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$ Apply & DONE 6: $\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$ Apply & DONE 7: \longrightarrow return μ_t, Σ_t

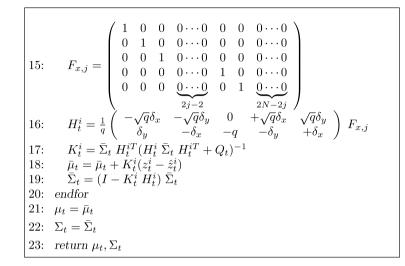
35

EKF SLAM – Correction (1/2)

ЕК	F_SLAM_Correction
6:	$Q_t = \left(\begin{array}{cc} \sigma_r^2 & 0\\ 0 & \sigma_{\phi}^2 \end{array}\right)$
7:	for all observed features $z_t^i = (r_t^i, \phi_t^i)^T$ do $j = c_t^i$ if landmark j never seen before
8:	$j = c_t^i$
9:	if landmark j never seen before
10:	$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$
11:	endif
12: 13:	$\begin{split} \delta &= \begin{pmatrix} \delta_x \\ \delta_y \\ q &= \delta^T \delta \end{split} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$
13:	$q = \delta^T \delta$
14:	$\hat{z}_t^i = \left(egin{array}{c} \sqrt{q} \\ \mathrm{atan2}(\delta_y, \delta_x) - ar{\mu}_{t, heta} \end{array} ight)$

37

EKF SLAM – Correction (2/2)



Implementation Notes

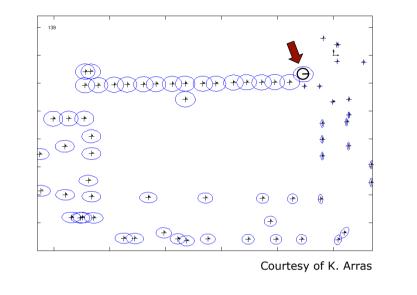
- Measurement update in a single step requires only one full belief update
- Always normalize the angular components
- You may not need to create the F matrices explicitly (e.g. in Octave)

Done!

Loop Closing

- Recognizing an already mapped area
- Data association with
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

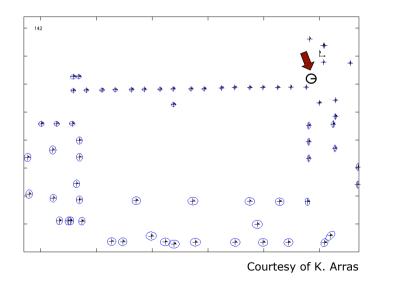
Before the Loop Closure



41

43

After the Loop Closure

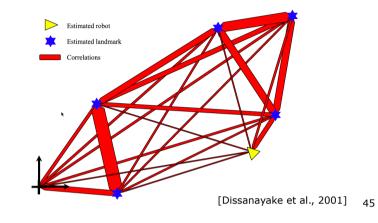


SLAM: Loop Closure

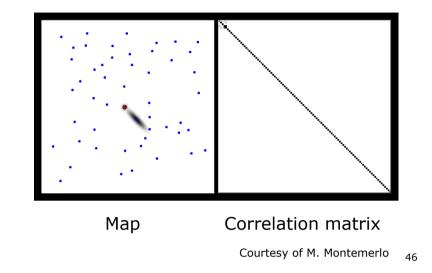
- Loop closing reduces the uncertainty in robot and landmark estimates
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Wrong loop closures lead to filter divergence

EKF-SLAM Properties

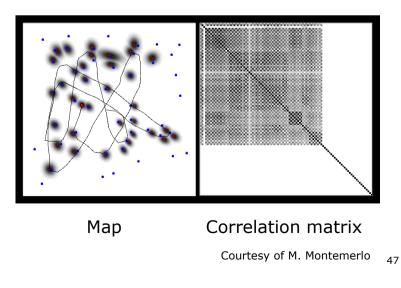
 In the limit, the landmark estimates become fully correlated



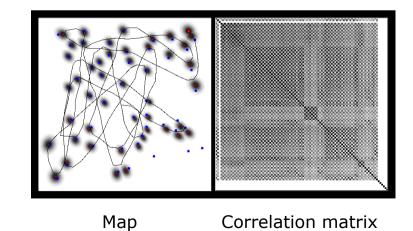
EKF SLAM



EKF SLAM



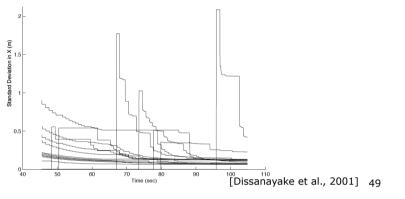
EKF SLAM



Courtesy of M. Montemerlo 48

EKF-SLAM Properties

- The determinant of any sub-matrix of the map covariance matrix decreases monotonically
- New landmarks are initialized with max uncertainty

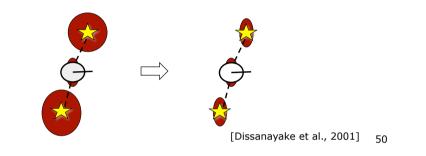


Example: Victoria Park Dataset

51

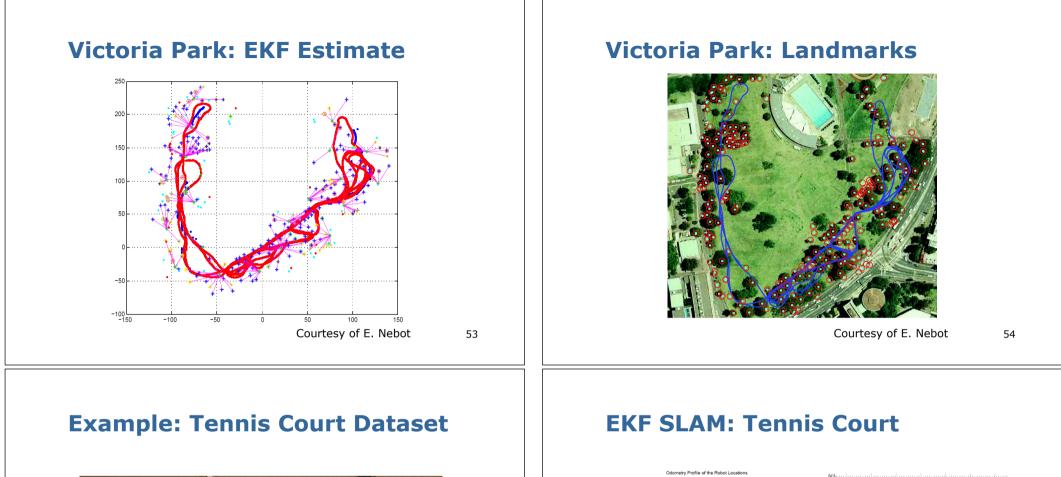
EKF-SLAM Properties

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.



Victoria Park: Data Acquisition

Courtesy of E. Nebot



Courtesy of J. Leonard and M. Walter

55

-80 -60 -40

20

40 60

estimated trajectory

Courtesy of J. Leonard and M. Walter 56

-20

odometry

EKF-SLAM Complexity

- Cubic complexity depends only on the measurement dimensionality
- Cost per step: dominated by the number of landmarks: $O(n^2)$
- Memory consumption: $O(n^2)$
- The EKF becomes computationally intractable for large maps!

EKF-SLAM Summary

- The first SLAM solution
- Convergence proof for the linear Gaussian case
- Can diverge if non-linearities are large (and the reality is non-linear...)
- Can deal only with a single mode
- Successful in medium-scale scenes
- Approximations exists to reduce the computational complexity

57

Literature

EKF SLAM

 Thrun et al.: "Probabilistic Robotics", Chapter 10