Robot Mapping

Unscented Kalman Filter

Cyrill Stachniss

1

KF, EKF and UKF

- Kalman filter requires linear models
- EKF linearizes via Taylor expansion

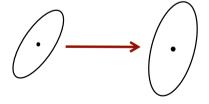
Is there a better way to linearize?

Unscented Transform

Unscented Kalman Filter (UKF)

2

Taylor Approximation (EKF)



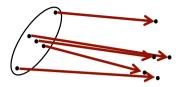
Linearization of the non-linear function through Taylor expansion

Unscented Transform

Compute a set of (so-called) sigma points

3

Unscented Transform



Transform each sigma point through the non-linear function

Unscented Transform

Compute Gaussian from the transformed and weighted points

6

Unscented Transform Overview

- Compute a set of sigma points
- Each sigma points has a weight
- Transform the point through the nonlinear function
- Compute a Gaussian from weighted points
- Avoids to linearize around the mean as the EKF does

Sigma Points

- How to choose the sigma points?
- How to set the weights?

7

Sigma Points Properties

- How to choose the sigma points?
- How to set the weights?
- Select $\mathcal{X}^{[i]}, w^{[i]}$ so that:

$$\begin{split} \sum_i w^{[i]} &= 1 \\ \mu &= \sum_i w^{[i]} \mathcal{X}^{[i]} \\ \Sigma &= \sum_i w^{[i]} (\mathcal{X}^{[i]} - \mu) (\mathcal{X}^{[i]} - \mu)^T \\ \bullet \text{ There is no unique solution for } \mathcal{X}^{[i]}, w^{[i]} \end{split}$$

Sigma Points

Choosing the sigma points

$$\mathcal{X}^{[0]} = \mu$$

First sigma point is the mean

10

Sigma Points

Choosing the sigma points

11

Matrix Square Root

- Defined as S with $\Sigma = SS$
- Computed via diagonalization

$$\Sigma = VDV^{-1}$$

$$= V\begin{pmatrix} d_{11} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & d_{nn} \end{pmatrix} V^{-1}$$

$$= V\begin{pmatrix} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{pmatrix}^{2} V^{-1}$$

Matrix Square Root

Thus, we can define

$$S = V \left(\begin{array}{ccc} \sqrt{d_{11}} & \dots & 0 \\ 0 & \ddots & 0 \\ 0 & \dots & \sqrt{d_{nn}} \end{array} \right) V^{-1}$$

so that

$$SS = (VD^{1/2}V^{-1})(VD^{1/2}V^{-1}) = VDV^{-1} = \Sigma$$

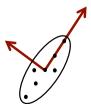
13

Sigma Points and Eigenvectors

• Sigma point can but do not have to lie on the main axes of Σ

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda) \Sigma}\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda) \Sigma}\right)_{i-n} \quad \text{for } i = n+1, \dots, 2n$$



Cholesky Matrix Square Root

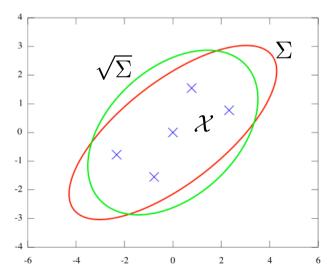
 Alternative definition of the matrix square root

$$L \text{ with } \Sigma = LL^T$$

- Result of the Cholesky decomposition
- Numerically stable solution
- Often used in UKF implementations
- L and Σ have the same Eigenvectors

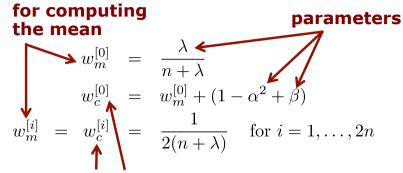
14

Sigma Points Example



Sigma Point Weights

Weight sigma points



for computing the covariance

Recover the Gaussian

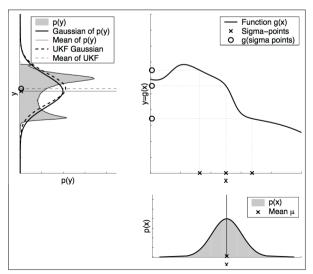
 Compute Gaussian from weighted and transformed points

$$\mu' = \sum_{i=0}^{2n} w_m^{[i]} g(\mathcal{X}^{[i]})$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^{[i]} (g(\mathcal{X}^{[i]}) - \mu') (g(\mathcal{X}^{[i]}) - \mu')^T$$

18

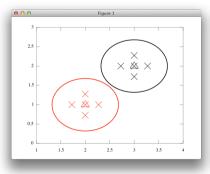
Example



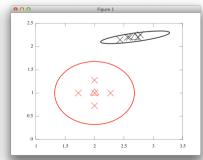
Examples

17

19



$$g((x,y)^T) = \begin{pmatrix} x+1\\y+1 \end{pmatrix}^T$$



$$g((x,y)^T) = \begin{pmatrix} x+1 \\ y+1 \end{pmatrix}^T \qquad g((x,y)^T) = \begin{pmatrix} 1+x+\sin(2x)+\cos(y) \\ 2+0.2y \end{pmatrix}^T$$

Unscented Transform Summary

Sigma points

$$\mathcal{X}^{[0]} = \mu$$

$$\mathcal{X}^{[i]} = \mu + \left(\sqrt{(n+\lambda)\Sigma}\right)_i \quad \text{for } i = 1, \dots, n$$

$$\mathcal{X}^{[i]} = \mu - \left(\sqrt{(n+\lambda)\Sigma}\right)_{i=n} \quad \text{for } i = n+1, \dots, 2n$$

Weights

$$w_m^{[0]} = \frac{\lambda}{n+\lambda}$$

$$w_c^{[0]} = w_m^{[0]} + (1-\alpha^2 + \beta)$$

$$w_m^{[i]} = w_c^{[i]} = \frac{1}{2(n+\lambda)} \quad \text{for } i = 1, \dots, 2n$$

21

23

UT Parameters

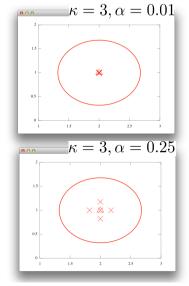
- Free parameters as there is no unique solution
- Scales Unscented Transform uses

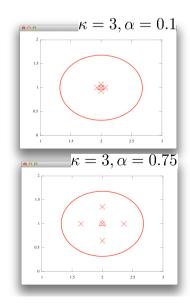
$$\begin{array}{lll} \kappa & \geq & 0 & \text{Influence how far the sigma points are} \\ \alpha & \in & (0,1] & \text{away from the mean} \\ \lambda & = & \alpha^2(n+\kappa)-n \end{array}$$

$$\beta = 2$$
 Optimal choice for Gaussians

22

Examples

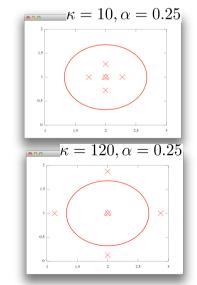




Examples



 $\kappa = 3, \alpha = 0.25$



EKF Algorithm

1: Extended_Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):

2:
$$\bar{\mu}_t = g(u_t, \mu_{t-1})$$

3:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$$

4:
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

7: return
$$\mu_t, \Sigma_t$$

EKF to UKF - Prediction

Unscented

1: Extended_Kalman_filter $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$:

2:
$$\bar{\mu}_t =$$
 replace this by sigma point

3:
$$\bar{\Sigma}_t = \text{propagation of the motion}$$

4:
$$K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$$

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$$

6:
$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

7: return
$$\mu_t, \Sigma_t$$

25

UKF Algorithm - Prediction

```
1: Unscented_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
```

2:
$$\mathcal{X}_{t-1} = (\mu_{t-1} \quad \mu_{t-1} + \gamma \sqrt{\Sigma_{t-1}} \quad \mu_{t-1} - \gamma \sqrt{\Sigma_{t-1}})$$

3:
$$\bar{\mathcal{X}}_t^* = g(u_t, \mathcal{X}_{t-1})$$

4:
$$\bar{\mu}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{X}}_t^{*[i]}$$

5:
$$\bar{\Sigma}_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t) (\bar{\mathcal{X}}_t^{*[i]} - \bar{\mu}_t)^T + R_t$$

EKF to UKF - Correction

Unscented

1: Extended Kalman_filter $(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t)$:

 $|2: \bar{\mu}_t = |$ replace this by sigma point

3: $\bar{\Sigma}_t = \text{propagation of the motion}$

use sigma point propagation for the expected observation and Kalman gain

5:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

6:
$$\Sigma_t = \bar{\Sigma}_t - K_t S_t K_t^T$$

7: return μ_t, Σ_t

UKF Algorithm - Correction (1)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \qquad \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} \qquad \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t})$$

7:
$$\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$$

8:
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$$

9:
$$S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$$

10:
$$\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$$

11:
$$K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$$

UKF Algorithm – Correction (1)

6:
$$\bar{\mathcal{X}}_{t} = (\bar{\mu}_{t} \quad \bar{\mu}_{t} + \gamma \sqrt{\bar{\Sigma}_{t}} \quad \bar{\mu}_{t} - \gamma \sqrt{\bar{\Sigma}_{t}})$$
7: $\bar{\mathcal{Z}}_{t} = h(\bar{\mathcal{X}}_{t})$
8: $\hat{z}_{t} = \sum_{i=0}^{2n} w_{m}^{[i]} \bar{\mathcal{Z}}_{t}^{[i]}$
9: $S_{t} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T} + Q_{t}$
10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$

10: $\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$ 11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$ $K_{t} = \bar{\Sigma}_{t} H_{t}^{T} (H_{t} \bar{\Sigma}_{t} H_{t}^{T} + Q_{t})^{-1}$ (from EKF)

30

UKF Algorithm - Correction (2)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \qquad \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} \qquad \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t})$$

7:
$$\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$$

8:
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$$

9:
$$S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T + Q_t$$

10:
$$\bar{\Sigma}_t^{x,z} = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{X}}_t^{[i]} - \bar{\mu}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{z}_t)^T$$

11:
$$K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$$

12:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

13:
$$\Sigma_t = \bar{\Sigma}_t - K_t \ S_t \ K_t^T$$

14: return μ_t, Σ_t

UKF Algorithm - Correction (2)

6:
$$\bar{\mathcal{X}}_t = (\bar{\mu}_t \qquad \bar{\mu}_t + \gamma \sqrt{\bar{\Sigma}_t} \qquad \bar{\mu}_t - \gamma \sqrt{\bar{\Sigma}_t})$$

7:
$$\bar{\mathcal{Z}}_t = h(\bar{\mathcal{X}}_t)$$

8:
$$\hat{z}_t = \sum_{i=0}^{2n} w_m^{[i]} \bar{\mathcal{Z}}_t^{[i]}$$

9:
$$S_t = \sum_{i=0}^{2n} w_c^{[i]} (\bar{\mathcal{Z}}_t^{[i]} - \hat{\mathcal{Z}}_t) (\bar{\mathcal{Z}}_t^{[i]} - \hat{\mathcal{Z}}_t)^T + Q_t$$

10:
$$\bar{\Sigma}_{t}^{x,z} = \sum_{i=0}^{2n} w_{c}^{[i]} (\bar{\mathcal{X}}_{t}^{[i]} - \bar{\mu}_{t}) (\bar{\mathcal{Z}}_{t}^{[i]} - \hat{z}_{t})^{T}$$

11: $K_{t} = \bar{\Sigma}_{t}^{x,z} S_{t}^{-1}$

12: $\mu_{t} = \bar{\mu}_{t} + K_{t}(z_{t} - \hat{z}_{t})$

13: $\Sigma_{t} = \bar{\Sigma}_{t} - K_{t} S_{t} K_{t}^{T}$

11:
$$K_t = \bar{\Sigma}_t^{x,z} S_t^{-1}$$

12:
$$\mu_t = \bar{\mu}_t + K_t(z_t - \hat{z}_t)$$

13:
$$\Sigma_t = \Sigma_t - K_t S_t P$$

14: return
$$\mu_t, \Sigma_t$$

$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

$$= \bar{\Sigma}_t - K_t H_t \bar{\Sigma}_t$$

$$= \bar{\Sigma}_t - K_t (\Sigma^{x,z})^T$$

$$= \Sigma_t - K_t (\Sigma^{x,z})^T$$

$$= \bar{\Sigma}_t - K_t (\Sigma^{x,z} s_t^{-1} S_t)^T$$

$$\bar{\Sigma}_t - K_t (K_t S_t)^T$$

 $\bar{\Sigma}_t = K_t S^T K^T$

$$= \Sigma_t - K_t S_t^* K_t^*$$

$$= \bar{\Sigma}_t - K_t S_t K_t^T$$

(see next slide)

From EKF to UKF – Computing the Covariance

$$\Sigma_{t} = (I - K_{t}H_{t})\bar{\Sigma}_{t}$$

$$= \bar{\Sigma}_{t} - K_{t}\underline{H}_{t}\bar{\Sigma}_{t}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{\Sigma}^{x,z})^{T}$$

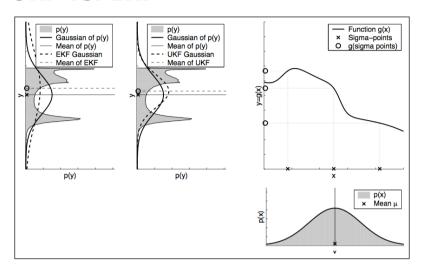
$$= \bar{\Sigma}_{t} - K_{t}(\bar{\Sigma}^{x,z}S_{t}^{-1}S_{t})^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}(\bar{K}_{t}S_{t})^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}S_{t}^{T}K_{t}^{T}$$

$$= \bar{\Sigma}_{t} - K_{t}S_{t}K_{t}^{T}$$

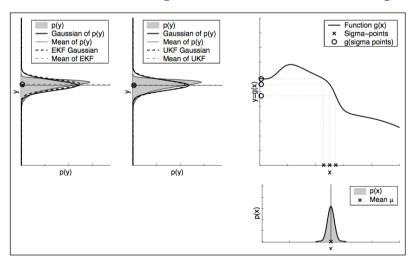
UKF vs. EKF



34

36

UKF vs. EKF (Small Covariance)

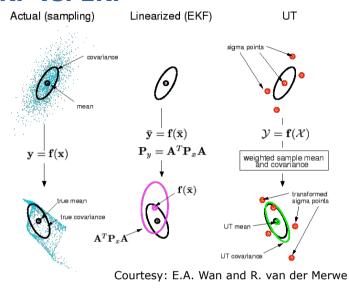


UKF vs. EKF - Banana Shape

UKF approximation

35

UKF vs. EKF



UT/UKF Summary

- Unscented transforms as an alternative to linearization
- UT is a better approximation than Taylor expansion
- UT uses sigma point propagation
- Free parameters in UT
- UKF uses the UT in the prediction and correction step

38

UKF vs. EKF

- Same results as EKF for linear models
- Better approximation than EKF for non-linear models
- Differences often "somewhat small"
- No Jacobians needed for the UKF
- Same complexity class
- Slightly slower than the EKF
- Still requires Gaussian distributions

Literature

Unscented Transform and UKF

- Thrun et al.: "Probabilistic Robotics", Chapter 3.4
- "A New Extension of the Kalman Filter to Nonlinear Systems" by Julier and Uhlmann, 1995
- "Dynamische Zustandsschätzung" by Fränken, 2006, pages 31-34

39