Robot Mapping

Unscented Kalman Filter

Cyrill Stachniss

UNI
FREIBURG

KF, EKF and UKF

= Kalman filter requires linear models
= EKF linearizes via Taylor expansion

Is there a better way to linearize?

Unscented Transform

$

Unscented Kalman Filter (UKF)

Taylor Approximation (EKF)

() —

Linearization of the non-linear
function through Taylor expansion

Unscented Transform

Compute a set of (so-called)
sigma points

Unscented Transform

Transform each sigma point
through the non-linear function

Unscented Transform

Compute Gaussian from the
transformed and weighted points

Unscented Transform Overview

= Compute a set of sigma points
= Each sigma points has a weight

= Transform the point through the non-
linear function

= Compute a Gaussian from weighted
points

= Avoids to linearize around the
meahn as the EKF does

Sigma Points

= How to choose the sigma points?
= How to set the weights?

Sigma Points Properties

= How to choose the sigma points?
= How to set the weights?
= Select xlil ol so that:

d wlf =1
o= Zw[i];([]
Y = Zw Iyt —)T

= There is no unlque solution for Xl !l

Sigma Points
= Choosing the sigma points

xlo] "

First sigma point is the mean

10

Sigma Points
= Choosing the sigma points

xor =y
xlil = u+(\/(n+)\)2) fori=1,...,n

(

,u}\/(n—k)\) Z)i_n fori=n+1,...,2n

\

column vectors

—
™.
[S

matrix square
root

dimensionality scaling parameter

11

Matrix Square Root

= Defined as S with X =SS5
= Computed via diagonalization

)y

VDV~!

12

Matrix Square Root
= Thus, we can define

vdi1 o ... 0
S =V 0 0 V1

0 dn,

\ . 4

D1/2
= 5O that
SS = (VDY2v—YhywDY2v—YH=vDVl=%

13

Cholesky Matrix Square Root

= Alternative definition of the matrix
square root

L with ¥ = LL*

= Result of the Cholesky decomposition
= Numerically stable solution

= Often used in UKF implementations

= [,and Y. have the same Eigenvectors

14

Sigma Points and Eigenvectors

= Sigma point can but do not have to
lie on the main axes of >

xll = ,u—l—(\/(n—l—)\)Z). fori=1,...,n

1

xlil = ,u—(\/(n—l—)\)Z) fori=n+1,...,2n

7

7—N

15

Sigma Points Example

4

3

2

0

[

|

VY

I

I

16

Sigma Point Weights
= Weight sigma points

for computing

the mean parameters
A
0] _
Hm n—+ A
w[z] — ’U][Z] — 1 fOI. Z — 1,...72’]1
" ,f 2(n+ A)

for computing the covariance

17

Recover the Gaussian

= Compute Gaussian from weighted and
transformed points

2n
W Zwﬂ g(xt

M Zwm (X —) (g(x) —)T

18

Example

P(y)
—— Gaussian of p(y)

—— Mean of p(y)
- - - UKF Gaussian
| -~ - - Mean of UKF

o)

X

— Function g(x)
x Sigma-points
O g(sigma points)

Y

x X

p(x)
x Meanp

19

Examples

o((z.)T) = (14+ x4+ ;1:1_((2)x2)y+ cos(y))

20

Unscented Transform Summary

= Sigma points

xo =y
xlil = ,u—l—(\/(n—l—)\)Z). fori=1,...,n
xlil = ,u—(\/(n—k)\)E). fori=n+1,...,2n
= Weights
A
(0] p—
Hm n—+ A
we! = wy +(1-a®+)
. 1
wil = il = forte=1,...,2n

21

UT Parameters

= Free parameters as there is no unique
solution

» Scales Unscented Transform uses

kK > 0 Influence how far the
sigma points are

a € (0,1] away from the mean

A = o*(n+k)—n

g = 2 Optimal choice for

Gaussians
22

Examples
o k=3, a=0.01

23

Examples
k=3, a=0.29

T

24

EKF Algorithm

Extended_Kalman_filter(u; 1, >:_1,us, 2¢):

e = glug, pe—1)
Zt — Gt Zt—l G%F —|— Rt

Ki=% H' (H:e X H + Q)7 !
pt = iy + Ky(ze — h(jig))

Zt — (I— Kt Ht) Et
return pis, 2

25

EKF to UKF - Prediction

Unscented
Extended Kalman _filter(u; 1, %1, us, 2¢):

p: = replace this by sigma point
¥y = propagation of the motion

return g, 2

26

UKF Algorithm - Prediction

1: Unscented_Kalman_filter(us_1, %1, us, 2¢):
X1 = (fe—1 pi—1 + Y/ 21 pt—1 — 7
Xt* — g(utv Xt—l)
2n
4 ft = Z wid Xy .
i=0
2n . .
5: Et — Zw([;Z](Xt [’L] L lat)()(t [Z] L ,at)T + Rt
i=0

Yt—1)

27

EKF to UKF - Correction

>

Unscented
Extended Kalman _filter(u; 1, %1, us, 2¢):

p: = replace this by sigma point
>y = propagation of the motion

use sigma point propagation for the
expected observation and Kalman gain

return iy, 2+

28

UKF Algorithm - Correction (1)

10:

11:

Xy = (fu i+ vV i — vV 3t
Zt — h(Xt)

2n
Zt = Z w,,[ﬁ _LEZ]
1=0

2n
Si=) w2 - 202 - 2)" + Qi
i=0

2n

7t =2 wl& -) (2 - 2T
1=0

K, =% 571

29

UKF Algorithm - Correction (1)

6: Xy = (i i + 7V 2y it — 7V St

7 Zt — h()?t)

9: Zw (21 = 2027 = 20T + @
10: Z w, Z] — ,ut Z[i 2t>T
11: K, = 2“5 1 ‘1’

ac,z St
\ r—/‘\

K, =%, HT(Ht DN HT + Qt)
(from EKF)

UKF Algorithm - Correction (2)

6: X, = (e e+ YV 2 Ht — YV it)
7 Zy = h(X)

2n
8: ét = ZUJ?@ —gz]
i=0
2n . ' '
9: S => wl(EZM -z 2 -2 + Qi
i=0

2n
10 =57 =Y W@ -)2 - 2"
1=0

11: K,=%p*5!

12: pe = jiy + Ki(ze — 2¢)
13: X =% — K, S; K
14: return (s, i

UKF Algorithm - Correction (2)

6: Xy = (i i + 7V 2y it — 7V St

7 Zt — h()?t)

2n
8: ét = Z ’UJLZJ _fm

10: BT = Z wil (X —) (2] = 2)7
Y (I — Kth)f)t
it - Kthit
it — Kt (Ex,z)T
St — Kt (Zm’zSt_lSt)T
S — Ky (KiS)"
¥, — K,STKF
¥ — K S K}
(see next slide)

11: K, = Ex " S 1

12: g = fig + Ke(2e — 2¢)
13: Xy =%—-K; S; K
14: return s, i

From EKF to UKF — Computing
the Covariance

Zt — (I — Kth)it

= X, — KtHfit

— it — Kt (233,2)
N NL,2 Q— T

— Zt — Kt (Z ’ St 1St)
S ' T

— Z15 D Kt (KtSt)

— it — KtSfKér

— it — KtStK;LT

T

33

UKF vs. EKF

P(y)
— Gaussian of p(y)

\| = Mean of p(y)
'\ { - -- EKF Gaussian

- - - Mean of EKF

p(y)
— Gaussian of p(y)
—— Mean of p(y)
- - - UKF Gaussian
- - - Mean of UKF

)

— Function g(x)
x Sigma-points
O g(sigma points)

.
T

X
?)
>

(

X * V3
X
p(x)
x Meanp

3 !
=t

34

UKF vs. EKF (Small Covariance)

p(y)
— Gaussian of p(y)

— Mean of p(y)
- - - EKF Gaussian
- - - Mean of EKF

p(y)
— Gaussian of p(y)

— Mean of p(y)
- -+ UKF Gaussian
- - - Mean of UKF

p(y)

p(y)

P
T

_y=9(x)

— Function g(x)
x Sigma-points
O g(sigma points)

o)

p(x)
x Meanpu

x

35

UKF vs. EKF - Banana Shape

EKF approximation

= =%

UKF approximation

S

36

UKF vs. EKF

Actual (sampling) Linearized (EKF) uT
k o | sigma ponnts
| °
y = f(x) Y = f(X)
T
y = f(x) P,=A"P;A weighted sample mean
l and covariance
v _ Y
f(X) transformed
0‘ 5|gma points
- b‘ UT mean

uT covanance

Courtesy: E.A. Wan and R. van der Merwe

37

UT/UKF Summary

= Unscented transforms as an
alternative to linearization

= UT is a better approximation than
Taylor expansion

= UT uses sigma point propagation
* Free parameters in UT

= UKF uses the UT in the prediction and
correction step

38

UKF vs. EKF

= Same results as EKF for linear models

= Better approximation than EKF for
non-linear models

= Differences often “somewhat smal
= No Jacobians needed for the UKF
= Same complexity class

= Slightly slower than the EKF

= Still requires Gaussian distributions

III

39

Literature

Unscented Transform and UKF
= Thrun et al.: "Probabilistic Robotics”,
Chapter 3.4

= A New Extension of the Kalman Filter
to Nonlinear Systems” by Julier and
Uhlmann, 1995

= “Dynamische Zustandsschatzung” by
Franken, 2006, pages 31-34

40

