Robot Mapping

Sparse Extended Information Filter for SLAM

Cyrill Stachniss

Two Parameterizations for a Gaussian Distribution

momentscanonical
$$\Sigma = \Omega^{-1}$$
 $\Omega = \Sigma^{-1}$ $\mu = \Omega^{-1} \xi$ $\xi = \Sigma^{-1} \mu$

covariance matrix mean vector information matrix information vector

Motivation

Gaussian estimate (map & pose) normalized covariance matrix normalized information matrix

Motivation

normalized information matrix

Most Features Have Only a Small Number of Strong Links

- Information matrix can be interpreted as a graph of constraints/links between nodes (variables)
- Ω_{ij} tells us the strength of a link
- Larger values for nearby features
- Most off-diagonal elements in the information are close to 0 (but $\neq 0$)

Sparsity

- Set" most links to zero/avoid fill-in
- Exploit sparseness of Ω in the computations
- sparse = finite number of non-zero off-diagonals, independent of the matrix size

before any observations

robot observes landmark 1

robot observes landmark 2

 Adds information between the robot's pose and the observed feature

before the robot's movement

after the robot's movement

effect of the robot's movement

- Weakens the links between the robot's pose and the landmarks
- Add links between landmarks

before sparsification

before sparsification

removal of the link between m_1 and x_{t+1}

effect of the sparsification

- Sparsification means ignoring links (assuming conditional independence)
- Here: links between the robot's pose and some of the features

Active and Passive Landmarks

 One of the key aspects of SEIF SLAM to obtain efficiency

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

Active vs. Passive Landmarks

Sparsification in Every Step

 SEIF SLAM conducts a sparsification steps in each iteration

Effect:

- The robot's pose is linked to the active landmarks only
- Landmarks have only links to nearby landmarks (landmarks that have been active at the same time)

Key Steps of SEIF SLAM

- 1. Motion update
- 2. Measurement update
- 3. Sparsification

Four Steps of SEIF SLAM

- 1. Motion update
- 2. Update of the state estimate
- 3. Measurement update
- 4. Sparsification

EIF updates: The mean is needed to apply the motion update and for computing an expected measurement

Four Steps of SEIF SLAM

 $\mathbf{SEIF}_{\mathbf{SLAM}}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t, z_t):$

- 1: $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t = \mathbf{SEIF}_{-}\mathbf{motion}_{-}\mathbf{update}(\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t)$
- 2: $\mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t)$
- 3: $\xi_t, \Omega_t = \mathbf{SEIF}_{-}\mathbf{measurement}_{-}\mathbf{update}(\bar{\xi}_t, \bar{\Omega}_t, \mu_t, z_t)$
- 4: $\tilde{\xi}_t, \tilde{\Omega}_t = \mathbf{SEIF}_{\mathbf{sparsification}}(\xi_t, \Omega_t, \mu_t)$

5: return $\tilde{\xi}_t, \tilde{\Omega}_t, \mu_t$

Note: we maintain ξ_t, Ω_t, μ_t

Four Steps of SEIF SLAM

$$\begin{array}{c|c} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t):\\ \hline \mathbf{1:} & \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t)\\ \hline 2: & \mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t)\\ \hline 3: & \xi_t,\Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\mu_t,z_t)\\ \hline 4: & \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t)\\ \hline 5: & return\ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}$$

Matrix Inversion Lemma

- Before we start, let us re-visit the matrix inversion lemma
- For any invertible quadratic matrices R and Q and any matrix P, the following holds:

$$(R + P Q P^{T})^{-1} = R^{-1} - R^{-1} P (Q^{-1} + P^{T} R^{-1} P)^{-1} P^{T} R^{-1}$$

SEIF SLAM – Prediction Step

- Goal: Compute $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t$ from motion and the previous estimate ξ_t, Ω_t, μ_t
- Efficiency by exploiting sparseness of the information matrix

Let us start from EKF SLAM...

$$\underbrace{\mathbf{EKF}_{t}}_{2:} \mathbf{SLAM_Prediction}(\mu_{t-1}, \Sigma_{t-1}, u_{t}, z_{t}, R_{t}): \\
 2: \quad F_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix} \\
 3: \quad \bar{\mu}_{t} = \mu_{t-1} + F_{x}^{T} \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \omega_{t}\Delta t \end{pmatrix} \\
 4: \quad G_{t} = I + F_{x}^{T} \begin{pmatrix} 0 & 0 & -\frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ 0 & 0 & -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_{x} \\
 5: \quad \bar{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + \underbrace{F_{x}^{T} R_{t}^{x} F_{x}}_{R_{t}} \\
 \end{cases}$$

Let us start from EKF SLAM...

EKF_SLAM_Prediction(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$$
):
2: $F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}$ copy & paste
3: $\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t & \text{copy & paste} \end{pmatrix}$
4: $G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$
5: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + \underbrace{F_x^T R_t^x F_x}_{R_t}$

Let us start from EKF SLAM...

EKF_SLAM_Prediction(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, R_t$$
):
2: $F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$ copy & paste
3: $\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t & \text{copy & paste} \end{pmatrix}$
4: $G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$
5: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + F_x^T R_t^x F_x$

use that as a building block for the IF update...

SEIF – Prediction Step (1/3)

Algorithm SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$): $\begin{vmatrix} 1 & 0 & 0 & 0 \cdots \\ 0 & 1 & 0 & 0 \cdots \\ 0 & 1 & 0 & 0 \cdots \\ 0 & 0 & 1 & 0 \cdots \\ 0 & 0 & 1 & 0 \cdots \\ \end{vmatrix}$ $\begin{vmatrix} 3: & \delta = \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$ $4: \quad \Delta = \begin{pmatrix} 0 & 0 & \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & \frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$

Computing the information matrix

$$\bar{\Omega}_t = \bar{\Sigma}_t^{-1}$$
$$= \left[G_t \ \Omega_{t-1}^{-1} \ G_t^T + R_t \right]^{-1}$$

Define

$$\Phi_t = \left[G_t \ \Omega_{t-1}^{-1} \ G_t^T \right]^{-1} \\ = \left[G_t^T \right]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

• Which leads to

$$\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$$

We can expand the noise matrix R

$$\bar{\Omega}_t = \left[\Phi_t^{-1} + R_t\right]^{-1}$$
$$= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1}$$

Apply the matrix inversion lemma

$$\bar{\Omega}_{t} = \left[\Phi_{t}^{-1} + R_{t}\right]^{-1} \\
= \left[\Phi_{t}^{-1} + F_{x}^{T} R_{t}^{x} F_{x}\right]^{-1} \\
= \Phi_{t} - \Phi_{t} F_{x}^{T} (R_{t}^{x-1} + F_{x} \Phi_{t} F_{x}^{T})^{-1} F_{x} \Phi_{t} \\
\overline{3x3 \text{ matrix}}$$
Information Matrix

Apply the matrix inversion lemma

Information Matrix

Apply the matrix inversion lemma

$$\begin{split} \bar{\Omega}_t &= \left[\Phi_t^{-1} + R_t\right]^{-1} \\ &= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1} \\ &= \Phi_t - \Phi_t F_x^T \left(\frac{R_t^{x-1} + F_x \Phi_t F_x^T\right)^{-1}}{3x3 \text{ matrix}} F_x \Phi_t \\ &\uparrow & & \uparrow & & \uparrow & \\ & & & Zero \text{ except} & & Zero \text{ except} \\ & & & & 3x3 \text{ block} & & & 3x3 \text{ block} & \\ \end{split}$$

• Constant complexity if Φ_t is sparse!

Information Matrix

This can be written as

$$\begin{split} \bar{\Omega}_t &= \left[\Phi_t^{-1} + R_t\right]^{-1} \\ &= \left[\Phi_t^{-1} + F_x^T R_t^x F_x\right]^{-1} \\ &= \Phi_t - \underbrace{\Phi_t F_x^T (R_t^{x-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t}_{\kappa_t} \\ &= \Phi_t - \kappa_t \end{split}$$

• Question: Can we compute Φ_t efficiently ($\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$)?

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1}$$

= $\begin{pmatrix} \Delta + I_3 & 0 \\ 0 \uparrow & I_{2N} \end{pmatrix}^{-1}$
3x3 identity 2Nx2N identity

• Goal: constant time if Ω_{t-1} is sparse

$$G_t^{-1} = (I + F_x^T \Delta F_x)^{-1} \\ = \begin{pmatrix} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1} \\ = \begin{pmatrix} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

holds for all block matrices where the off-diagonal blocks are zero

• Goal: constant time if Ω_{t-1} is sparse

$$G_{t}^{-1} = (I + F_{x}^{T} \Delta F_{x})^{-1}$$

$$= \begin{pmatrix} \Delta + I_{3} & 0 \\ 0 & I_{2N} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} (\Delta + I_{3})^{-1} & 0 \\ 0 & I_{2N} \end{pmatrix}$$

$$= I_{3+2N} + \begin{pmatrix} (\Delta + I_{3})^{-1} - I_{3} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
Note: 3x3 matrix

• Goal: constant time if Ω_{t-1} is sparse

$$\begin{aligned} G_t^{-1} &= (I + F_x^T \Delta F_x)^{-1} \\ &= \left(\begin{array}{cc} \Delta + I_3 & 0 \\ 0 & I_{2N} \end{array} \right)^{-1} \\ &= \left(\begin{array}{cc} (\Delta + I_3)^{-1} & 0 \\ 0 & I_{2N} \end{array} \right) \\ &= I_{3+2N} + \left(\begin{array}{cc} (\Delta + I_3)^{-1} - I_3 & 0 \\ 0 & 0 \end{array} \right) \\ &= I + \underbrace{F_x^T \left[(I + \Delta)^{-1} - I \right] F_x}_{\Psi_t} \\ &= I + \Psi_t \end{aligned}$$

We have

 $G_t^{-1} = I + \Psi_t$ $[G_t^T]^{-1} = I + \Psi_t^T$

with

$$\Psi_t = F_x^T \left[(I + \Delta)^{-1} - I \right] F_x$$

3x3 matrix

 Ψ_t is zero except of a 3x3 block G_t^{-1} is an identity except of a 3x3 block

Given that:

- G_t⁻¹ and [G_t^T]⁻¹ are identity matrices except of a 3x3 block
- The information matrix is sparse
- This implies that

$$\Phi_t = [G_t^T]^{-1} \ \Omega_{t-1} \ G_t^{-1}$$

can be computed in constant time

Constant Time Computing of Φ_t

Given Ω_{t-1} is sparse, the constant time update can be seen by

$$\Phi_t = [G_t^T]^{-1} \Omega_{t-1} G_t^{-1}$$

$$= (I + \Psi_t^T) \Omega_{t-1} (I + \Psi_t)$$

$$= \Omega_{t-1} + \underbrace{\Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t}_{\lambda_t}$$

$$= \Omega_{t-1} + \lambda_t$$

all zero elements except a constant number of entries

Prediction Step in Brief

- Compute Ψ_t
- Compute λ_t based on Ψ_t
- Compute Φ_t based on λ_t
- Compute κ_t based on Φ_t
- Compute $\bar{\Omega}_t$ based on κ_t

SEIF – Prediction Step (2/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):

2: $F_x = \cdots$ 3: $\delta = \cdots$ 4: $\Delta = \cdots$ 5: $\Psi_t = F_x^T \left[(I + \Delta)^{-1} - I \right] F_x$ 6: $\lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t$ 7: $\Phi_t = \Omega_{t-1} + \lambda_t$ 8: $\kappa_t = \Phi_t F_x^T (R_t^{-1} + F_x \Phi_t F_x^T)^{-1} F_x \Phi_t$ 9: $\bar{\Omega}_t = \Phi_t - \kappa_t$

Information matrix is computed, now do the same for the information vector and the mean

Compute Mean

The mean is computed as in the EKF

$$\bar{\mu}_t = \mu_{t-1} + F_x^T \,\delta$$

Reminder (from SEIF motion update)

2:
$$F_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 \cdots & 0 \\ 0 & 0 & 1 & \underbrace{0 & \cdots & 0}_{2N} \end{pmatrix}$$

3:
$$\delta = \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \mu_{t-1,\theta} + \frac{v_{t}}{\omega_{t}} \sin(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \mu_{t-1,\theta} - \frac{v_{t}}{\omega_{t}} \cos(\mu_{t-1,\theta} + \omega_{t}\Delta t) \\ \omega_{t}\Delta t \end{pmatrix}$$

- We obtain the information vector by
- $ar{\xi}_t$
- $= \bar{\Omega}_t \left(\mu_{t-1} + F_x^T \, \delta_t \right)$
- $= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \xi_{t-1} + F_x^T \delta_t \right)$

- We obtain the information vector by
- $\bar{\xi}_t = \bar{\Omega}_t \left(\mu_{t-1} + F_x^T \, \delta_t \right)$
- $= \bar{\Omega}_t \left(\Omega_{t-1}^{-1} \xi_{t-1} + F_x^T \delta_t \right)$
- $= \bar{\Omega}_t \ \Omega_{t-1}^{-1} \ \xi_{t-1} + \bar{\Omega}_t \ F_x^T \ \delta_t$

• We obtain the information vector by $\bar{\xi}_t$

$$= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})$$

$$= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})$$

$$= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=1} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

• We obtain the information vector by $\bar{\xi}_t$

$$= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})$$

$$= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})$$

$$= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=1} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$= (\underbrace{\bar{\Omega}_{t} - \Phi_{t}}_{=-\kappa_{t}} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{=\lambda_{t}}) \underbrace{\Omega_{t-1}^{-1} \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \Omega_{t-1}^{-1}}_{=I} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

• We obtain the information vector by $\bar{\xi}_t$

$$= \bar{\Omega}_{t} (\mu_{t-1} + F_{x}^{T} \delta_{t})$$

$$= \bar{\Omega}_{t} (\Omega_{t-1}^{-1} \xi_{t-1} + F_{x}^{T} \delta_{t})$$

$$= \bar{\Omega}_{t} \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$= (\bar{\Omega}_{t} \underbrace{-\Phi_{t} + \Phi_{t}}_{=1} \underbrace{-\Omega_{t-1} + \Omega_{t-1}}_{=1}) \Omega_{t-1}^{-1} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$= (\underbrace{\bar{\Omega}_{t} - \Phi_{t}}_{=-\kappa_{t}} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{=\lambda_{t}}) \underbrace{\Omega_{t-1}^{-1} \xi_{t-1}}_{=\mu_{t-1}} + \underbrace{\Omega_{t-1} \Omega_{t-1}^{-1}}_{=I} \xi_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

$$= \xi_{t-1} + (\lambda_{t} - \kappa_{t}) \mu_{t-1} + \bar{\Omega}_{t} F_{x}^{T} \delta_{t}$$

SEIF – Prediction Step (3/3)

SEIF_motion_update($\xi_{t-1}, \Omega_{t-1}, \mu_{t-1}, u_t$):

2: $F_r = \cdots$ 3: $\delta = \cdots$ 4: $\Delta = \cdots$ 5: $\Psi_t = F_x^T [(I + \Delta)^{-1} - I] F_x$ 6: $\lambda_t = \Psi_t^T \Omega_{t-1} + \Omega_{t-1} \Psi_t + \Psi_t^T \Omega_{t-1} \Psi_t$ 7: $\Phi_t = \Omega_{t-1} + \lambda_t$ 8: $\kappa_t = \Phi_t F_r^T (R_t^{-1} + F_r \Phi_t F_r^T)^{-1} F_r \Phi_t$ 9: $\bar{\Omega}_t = \Phi_t - \kappa_t$ 10: $\bar{\xi}_t = \xi_{t-1} + (\lambda_t - \kappa_t) \mu_{t-1} + \bar{\Omega}_t F_r^T \delta_t$ 11: $\bar{\mu}_t = \mu_{t-1} + F_r^T \delta$ 12: return $\bar{\xi}_t, \bar{\Omega}_t, \bar{\mu}_t$

Four Steps of SEIF SLAM

SEIF – Measurement (1/2)

identical to the EKF SLAM

SEIF – Measurement (2/2)

$$10: \quad H_{t}^{i} = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_{x} & -\sqrt{q}\delta_{y} & 0 & 0 \dots 0 & +\sqrt{q}\delta_{x} & \sqrt{q}\delta_{y} & 0 \dots 0 \\ \delta_{y} & -\delta_{x} & -q & 0 \dots 0 \\ 2j-2 & -\delta_{y} & +\delta_{x} & 0 \dots 0 \\ 2j-2 & -\delta_{y} & +\delta_{x} & 0 \dots 0 \\ 2N-2j \end{pmatrix}$$

$$11: \quad \text{endfor}$$

$$12: \quad \xi_{t} = \bar{\xi}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} [z_{t}^{i} - \hat{z}_{t}^{i} + H_{t}^{i} \mu_{t}]$$

$$13: \quad \Omega_{t} = \bar{\Omega}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} H_{t}^{i}$$

$$14: \quad \text{return } \xi_{t}, \Omega_{t}$$

Difference to EKF (but as in EIF):

$$\xi_{t} = \bar{\xi}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} [z_{t}^{i} - \hat{z}_{t}^{i} + H_{t}^{i} \mu_{t}]$$

$$\Omega_{t} = \bar{\Omega}_{t} + \sum_{i} H_{t}^{iT} Q_{t}^{-1} H_{t}^{i}$$

Four Steps of SEIF SLAM

 Question: what does sparsification of the information matrix means?

- Question: what does sparsification of the information matrix means?
- It means ignoring direct links between random variables (assuming a conditional independence)

Sparsification in General

Replace the distribution

p(a, b, c)

- by an approximation \tilde{p} so that a and b are independent given c

$$\tilde{p}(a \mid b, c) = p(a \mid c)$$
$$\tilde{p}(b \mid a, c) = p(b \mid c)$$

Approximation by Assuming Conditional Independence

This leads to

Sparsification in SEIFs

- Goal: approximate Ω so that it is (and stays) sparse
- Realized by: maintaining only links between the robot and a few landmarks
- This also limits the number of links between landmarks

Limit Robot-Landmark Links

 Consider a set of active landmarks during the updates

Active and Passive Landmarks

Active Landmarks

- A subset of all landmarks
- Includes the currently observed ones

Passive Landmarks

All others

Sparsification Considers Three Sets of Landmarks

- Active ones that stay active
- Active ones that become passive
- Passive ones

$$m = m^{+} + m^{0} + m^{-}$$

active active passive
to passive

- Remove links between robot's pose and active landmarks that become passive
- Equal to conditional independence given the other landmarks
- No change in the links of passive ones

• Sparsification is an approximation!

 $p(x_t, m \mid z_{1:t}, u_{1:t}) = p(x_t, m^+, m^0, m^- \mid z_{1:t}, u_{1:t})$ \$\approx \ldots \l

- Dependencies from z, u not shown:

 $p(x_t, m) = p(x_t, m^+, m^0, m^-)$ = $p(x_t | m^+, m^0, m^-) p(m^+, m^0, m^-)$ = $p(x_t | m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$ $\simeq \dots$

> Given the active landmarks, the passive landmarks do not matter for computing the robot's pose (so set to zero)

- Dependencies from z, u not shown:

$$p(x_t, m) = p(x_t, m^+, m^0, m^-)$$

= $p(x_t | m^+, m^0, m^-) p(m^+, m^0, m^-)$
= $p(x_t | m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$
 $\simeq p(x_t | m^+, m^- = 0) p(m^+, m^0, m^-)$

Sparsification: assume conditional independence of the robot's pose from the landmarks that become passive (given $m^+, m^- = 0$)

- Dependencies from z, u not shown:

$$p(x_t, m) = p(x_t, m^+, m^0, m^-)$$

$$= p(x_t \mid m^+, m^0, m^-) p(m^+, m^0, m^-)$$

$$= p(x_t \mid m^+, m^0, m^- = 0) p(m^+, m^0, m^-)$$

$$\simeq p(x_t \mid m^+, m^- = 0) p(m^+, m^0, m^-)$$

$$= \frac{p(x_t, m^+ \mid m^- = 0)}{p(m^+ \mid m^- = 0)} p(m^+, m^0, m^-)$$

$$= \tilde{p}(x_t, m)$$

Information Matrix Update

 Sparsifying the direct links between the robot's pose and m⁰ results in

$$\begin{split} \tilde{p}(x_t, m \mid z_{1:t}, u_{1:t}) \\ \simeq \quad \frac{p(x_t, m^+ \mid m^- = 0, z_{1:t}, u_{1:t})}{p(m^+ \mid m^- = 0, z_{1:t}, u_{1:t})} \; p(m^0, m^+, m^- \mid z_{1:t}, u_{1:t}) \end{split}$$
The sparsification replaces Ω, ξ by approximated values
Express $\tilde{\Omega}$ as a sum of three matrices
$$\tilde{\Omega}_t \;\;=\;\; \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$
Information Vector Update

The information vector can be recovered directly by:

$$\begin{split} \tilde{\xi}_t &= \tilde{\Omega}_t \ \mu_t \\ &= (\Omega_t - \Omega_t + \tilde{\Omega}_t) \ \mu_t \\ &= \Omega_t \ \mu_t + (\tilde{\Omega}_t - \Omega_t) \ \mu_t \\ &= \xi_t + (\tilde{\Omega}_t - \Omega_t) \ \mu_t \end{split}$$

Sparsification Step

SEIF_sparsification(ξ_t, Ω_t, μ_t):

define F_{m_0}, F_{x,m_0}, F_x as projection matrices 1: to m_0 , $\{x, m_0\}$, and x, respectively

2:
$$\tilde{\Omega}_t = \Omega_t - \Omega_t^0 F_{m_0} (F_{m_0}^T \Omega_t^0 F_{m_0})^{-1} F_{m_0}^T \Omega_t^0 + \Omega_t^0 F_{x,m_0} (F_{x,m_0}^T \Omega_t^0 F_{x,m_0})^{-1} F_{x,m_0}^T \Omega_t^0 - \Omega_t F_x (F_x^T \Omega_t F_x)^{-1} F_x^T \Omega_t$$

3: $\tilde{\xi}_t = \xi_t + (\tilde{\Omega}_t - \Omega_t) \mu_t$ 4: return $\tilde{\xi}_t, \tilde{\Omega}_t$

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3$$

Four Steps of SEIF SLAM

$$\begin{array}{c} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t):\\ 1: \quad \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t = \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\mathbf{QONE})\\ 2: \quad \mu_t = \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t)\\ 3: \quad \xi_t,\Omega_t = \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\mu_t,z_t) \ \mathbf{DONE}\\ 4: \quad \tilde{\xi}_t,\tilde{\Omega}_t = \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t) \ \mathbf{DONE}\\ 5: \quad return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{array}$$

Recovering the Mean

- Computing the exact mean requires $\mu = \Omega^{-1} \xi$, which is costly!

The mean is needed for the

- Inearized motion model (pose)
- linearized measurement model (pose and visible landmarks)
- sparsification step (pose and subset of the landmarks)

Approximation of the Mean

- Computing the (few) dimensions of the mean in an **approximated** way
- Idea: Treat that as an optimization problem and seek to find

$$\hat{\mu} = \operatorname{argmax} p(\mu)$$

Finding the mean that maximize the probability density function?

Approximation of the Mean

- Derive function
- Set first derivative to zero
- Solve equation(s)
- Iterate
- Can be done effectively given that only a few dimensions of μ are needed

no further details here...

Four Steps of SEIF SLAM

$$\begin{aligned} \mathbf{SEIF_SLAM}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},u_t,z_t): \\ 1: \quad \bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t &= \mathbf{SEIF_motion_update}(\xi_{t-1},\Omega_{t-1},\mu_{t-1},\mathbf{DONE}) \\ 2: \quad \mu_t &= \mathbf{SEIF_update_state_estimate}(\bar{\xi}_t,\bar{\Omega}_t,\bar{\mu}_t) \quad \mathbf{DONE} \\ 3: \quad \xi_t,\Omega_t &= \mathbf{SEIF_measurement_update}(\bar{\xi}_t,\bar{\Omega}_t,\mu_t,z_t) \quad \mathbf{DONE} \\ 4: \quad \tilde{\xi}_t,\tilde{\Omega}_t &= \mathbf{SEIF_sparsification}(\xi_t,\Omega_t,\mu_t) \quad \mathbf{DONE} \\ 5: \quad return \ \tilde{\xi}_t,\tilde{\Omega}_t,\mu_t \end{aligned}$$

Effect of the Sparsification

80

SEIF SLAM vs. EKF SLAM

- Roughly constant time complexity vs. quadratic complexity of the EKF
- Linear memory complexity vs. quadratic complexity of the EKF
- SEIF SLAM is less accurate than EKF SLAM (sparsification, mean recovery)

SEIF & EKF: CPU Time

SEIF & EKF: Memory Usage

SEIF & EKF: Error Comparison

Influence of the Active Features

Influence of the Active Features

Summary in SEIF SLAM

- SEIFs are an efficient approximation of the EIF for the SLAM problem
- Neglects direct links by sparsification
- Mean computation is an approxmation
- Constant time updates of the filter (for known correspondences)
- Linear memory complexity
- Inferior quality compared to EKF SLAM

Literature

Sparse Extended Information Filter

 Thrun et al.: "Probabilistic Robotics", Chapter 12.1-12.7