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Robot Mapping  
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Filter for SLAM 
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Two Parameterizations for a 
Gaussian Distribution 
  
 moments  canonical 

covariance matrix 
mean vector 

information matrix 
information vector 
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Motivation 

Gaussian  
estimate 

(map & pose) 

normalized 
covariance 

matrix 

normalized 
information 

matrix 
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Motivation 

small but 
non-zero 

normalized information matrix 
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Most Features Have Only a 
Small Number of Strong Links 



6 

Information Matrix 

§  Information matrix can be interpreted 
as a graph of constraints/links 
between nodes (variables) 

§        tells us the strength of a link 
§  Larger values for nearby features 
§  Most off-diagonal elements in the 

information are close to 0 (but      ) 
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Sparsity 

§  “Set” most links to zero/avoid fill-in 
§  Exploit sparseness of     in the 

computations 

§  sparse = finite number of non-zero 
off-diagonals, independent of the 
matrix size 



8 

Effect of Measurement Update 
on the Information Matrix 

before any observations 
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Effect of Measurement Update 
on the Information Matrix 

robot observes landmark 1 
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Effect of Measurement Update 
on the Information Matrix 

robot observes landmark 2 



11 

Effect of Measurement Update 
on the Information Matrix 
§  Adds information between the robot’s 

pose and the observed feature 
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Effect of Motion Update on the 
Information Matrix 

before the robot’s movement  
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Effect of Motion Update on the 
Information Matrix 

after the robot’s movement  
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Effect of Motion Update on the 
Information Matrix 

effect of the robot’s movement  
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Effect of Motion Update on the 
Information Matrix 
§  Weakens the links between the robot’s 

pose and the landmarks 
§  Add links between landmarks 
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Sparsification 

before sparsification 
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Sparsification 

before sparsification 
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Sparsification 

removal of the link between      and   
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Sparsification 

effect of the sparsification  
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Sparsification 

§  Sparsification means ignoring links  
(assuming conditional independence)  

§  Here: links between the robot’s pose 
and some of the features 
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Active and Passive Landmarks 

§  One of the key aspects of SEIF SLAM 
to obtain efficiency 

 
Active Landmarks 
§  A subset of all landmarks 
§  Includes the currently observed ones 

Passive Landmarks 
§  All others 
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Active vs. Passive Landmarks 

was active, 
now passive 

active 

passive 
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Sparsification in Every Step 

§  SEIF SLAM conducts a sparsification 
steps in each iteration 

 
Effect: 
§  The robot’s pose is linked to the active 

landmarks only 
§  Landmarks have only links to nearby 

landmarks (landmarks that have been 
active at the same time) 
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Key Steps of SEIF SLAM 

1. Motion update  
2. Measurement update 
3. Sparsification 
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Four Steps of SEIF SLAM 

1. Motion update 
2. Update of the state estimate 
3. Measurement update 
4. Sparsification 

EIF updates: The mean is needed  
to apply the motion update and for  
computing an expected measurement  
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Four Steps of SEIF SLAM 

Note: we maintain 
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Four Steps of SEIF SLAM 
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Matrix Inversion Lemma 

§  Before we start, let us re-visit the 
matrix inversion lemma 

§  For any invertible quadratic matrices R 
and Q and any matrix P, the following 
holds: 
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SEIF SLAM – Prediction Step 

§  Goal: Compute            from motion 
and the previous estimate 

§  Efficiency by exploiting sparseness of 
the information matrix 
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Let us start from EKF SLAM… 
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Let us start from EKF SLAM… 

copy & paste 

copy & paste 

copy & paste 
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Let us start from EKF SLAM… 

copy & paste 

copy & paste 

copy & paste 

use that as a building block for the IF update… 
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SEIF – Prediction Step (1/3) 
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Information Matrix 

§  Computing the information matrix  

 
§  Define 

§  Which leads to 
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Information Matrix 

§  We can expand the noise matrix R 
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Information Matrix 

§  Apply the matrix inversion lemma 

3x3 matrix 
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Information Matrix 

§  Apply the matrix inversion lemma 

3x3 matrix 

Zero except 
3x3 block 

Zero except 
3x3 block 
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Information Matrix 

§  Apply the matrix inversion lemma 

§  Constant complexity if     is sparse! 

3x3 matrix 
Zero except 
3x3 block 

Zero except 
3x3 block 
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Information Matrix 

§  This can be written as 

§  Question: Can we compute     
efficiently (                          )? 
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Computing  

§  Goal: constant time if        is sparse 

2Nx2N identity  3x3 identity  
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Computing  

§  Goal: constant time if        is sparse 

holds for all block matrices where  
the off-diagonal blocks are zero  
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Computing  

§  Goal: constant time if        is sparse 

Note: 3x3 matrix 
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Computing  

§  Goal: constant time if        is sparse 
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Computing  

§  We have 

§  with 

§       is zero except of a 3x3 block  
§       is an identity except of a 3x3 block 

3x3 matrix 
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Computing  

Given that: 
§        and          are identity matrices 

except of a 3x3 block  
§  The information matrix is sparse 
§  This implies that 

§  can be computed in constant time 
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Constant Time Computing of  

§  Given        is sparse, the constant time 
update can be seen by 

all zero elements except  
a constant number of entries 
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Prediction Step in Brief 

§  Compute       
§  Compute     based on  
§  Compute     based on  
§  Compute     based on  
§  Compute     based on  
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SEIF – Prediction Step (2/3) 

Information matrix is computed, now do the  
same for the information vector and the mean 
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Compute Mean 

§  The mean is computed as in the EKF 

§  Reminder (from SEIF motion update) 
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Compute the Information Vector 

§  We obtain the information vector by 
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Compute the Information Vector 

§  We obtain the information vector by 
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Compute the Information Vector 

§  We obtain the information vector by 
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Compute the Information Vector 

§  We obtain the information vector by 
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Compute the Information Vector 

§  We obtain the information vector by 
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SEIF – Prediction Step (3/3) 
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Four Steps of SEIF SLAM 

DONE 
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SEIF – Measurement (1/2) 

identical to the EKF SLAM 

(data association) 
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SEIF – Measurement (2/2) 

Difference to EKF (but as in EIF): 
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Four Steps of SEIF SLAM 

DONE 

DONE 
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Sparsification 

§  Question: what does sparsification of 
the information matrix means? 
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Sparsification 

§  Question: what does sparsification of 
the information matrix means? 

§  It means ignoring direct links between 
random variables (assuming a 
conditional independence) 
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Sparsification in General 

§  Replace the distribution 

§  by an approximation   so that    and    
are independent given  
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Approximation by Assuming 
Conditional Independence 
§  This leads to 

approximation  
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Sparsification in SEIFs 

§  Goal: approximate    so that it is  
(and stays) sparse 

§  Realized by: maintaining only links 
between the robot and a few 
landmarks 

§  This also limits the number of links 
between landmarks 
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Limit Robot-Landmark Links  

§  Consider a set of active landmarks 
during the updates 
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Active and Passive Landmarks 

Active Landmarks 
§  A subset of all landmarks 
§  Includes the currently observed ones 

Passive Landmarks 
§  All others 
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Sparsification Considers Three 
Sets of Landmarks 
§  Active ones that stay active 
§  Active ones that become passive 
§  Passive ones 

active active 
to passive 

passive 
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Sparsification 

§  Remove links between robot’s pose 
and active landmarks that become 
passive 

§  Equal to conditional independence 
given the other landmarks 

§  No change in the links of passive ones 
§  Sparsification is an approximation! 
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Sparsification 

§  Dependencies from       not shown: 

Given the active landmarks, the  
passive landmarks do not matter  
for computing the robot’s pose  

(so set to zero) 
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Sparsification 

§  Dependencies from       not shown: 

Sparsification: assume conditional 
independence of the robot’s pose from  

the landmarks that become passive 
(given                   ) 
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Sparsification 

§  Dependencies from       not shown: 
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Information Matrix Update 

§  Sparsifying the direct links between 
the robot’s pose and      results in 

§  The sparsification replaces       by 
approximated values  

§  Express     as a sum of three matrices 
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Information Vector Update 

§  The information vector can be 
recovered directly by: 
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Sparsification Step 
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Four Steps of SEIF SLAM 

DONE 

DONE 
DONE 
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Recovering the Mean  

§  Computing the exact mean requires 
                 , which is costly! 

The mean is needed for the 
§  linearized motion model (pose) 
§  linearized measurement model 

(pose and visible landmarks) 
§  sparsification step (pose and subset  

of the landmarks) 
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Approximation of the Mean  

§  Computing the (few) dimensions of 
the mean in an approximated way  

§  Idea: Treat that as an optimization 
problem and seek to find  

§  Finding the mean that maximize the 
probability density function? 
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Approximation of the Mean  

§  Derive function  
§  Set first derivative to zero 
§  Solve equation(s) 
§  Iterate 

§  Can be done effectively given that only 
a few dimensions of    are needed 

         no further details here… 
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Four Steps of SEIF SLAM 

DONE 

DONE 
DONE 

DONE 
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Effect of the Sparsification 



81 

SEIF SLAM vs. EKF SLAM 

§  Roughly constant time complexity  
vs. quadratic complexity of the EKF 

§  Linear memory complexity  
vs. quadratic complexity of the EKF 

§  SEIF SLAM is less accurate than EKF 
SLAM (sparsification, mean recovery)  
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SEIF & EKF: CPU Time 
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SEIF & EKF: Memory Usage 
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SEIF & EKF: Error Comparison 
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Influence of the Active Features 
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Influence of the Active Features 

reasonable values for the  
number of active features  
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Summary in SEIF SLAM 

§  SEIFs are an efficient approximation 
of the EIF for the SLAM problem 

§  Neglects direct links by sparsification 
§  Mean computation is an approxmation 
§  Constant time updates of the filter  

(for known correspondences) 
§  Linear memory complexity 
§  Inferior quality compared to EKF 

SLAM  



88 

Literature 

Sparse Extended Information Filter 
§  Thrun et al.: “Probabilistic Robotics”, 

Chapter 12.1-12.7 


