Robot Mapping

Summary on the Kalman Filter & Friends: KF, EKF, UKF, EIF, SEIF

Cyrill Stachniss

Three Main SLAM Paradigms

Kalman filter

Particle filter

Graphbased

Kalman Filter & Its Friends

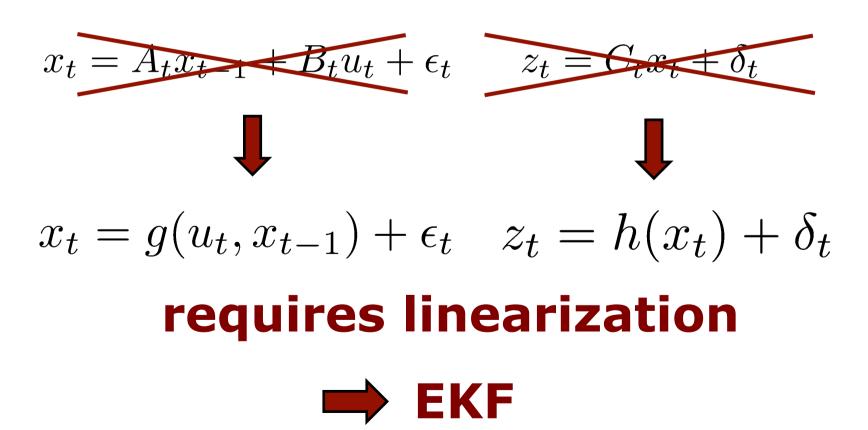


Kalman Filter Algorithm

1: Kalman_filter(
$$\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$$
):
2: $\bar{\mu}_t = A_t \ \mu_{t-1} + B_t \ u_t$ prediction
3: $\bar{\Sigma}_t = A_t \ \Sigma_{t-1} \ A_t^T + R_t$ prediction
4: $K_t = \bar{\Sigma}_t \ C_t^T (C_t \ \bar{\Sigma}_t \ C_t^T + Q_t)^{-1}$
5: $\mu_t = \bar{\mu}_t + K_t (z_t - C_t \ \bar{\mu}_t)$ correction
6: $\Sigma_t = (I - K_t \ C_t) \ \bar{\Sigma}_t$
7: return μ_t, Σ_t

Non-linear Dynamic Systems

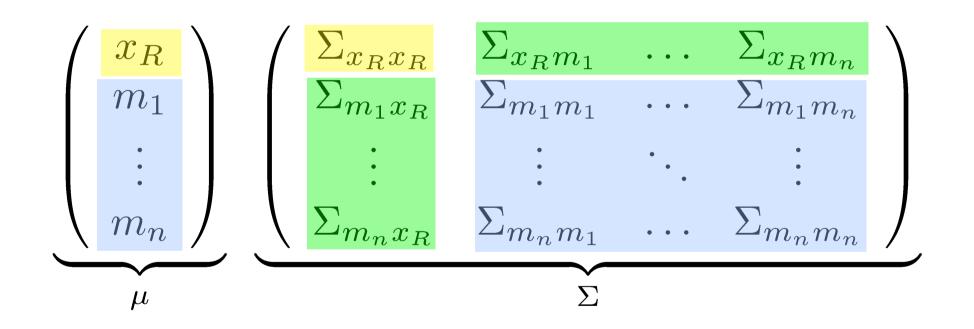
 Most realistic problems in robotics involve nonlinear functions

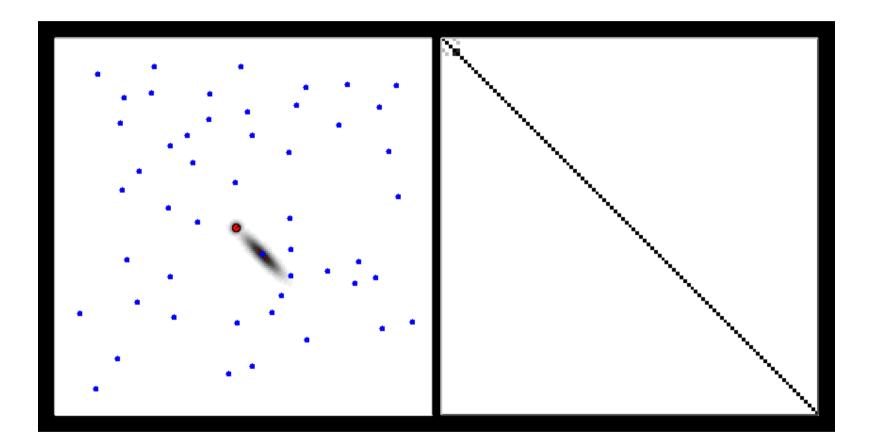


KF vs. EKF

- EKF is an extension of the KF
- Approach to handle the non-linearities
- Performs local linearizations
- Works well in practice for moderate non-linearities and uncertainty
- Complexity: $O(k^{2.4} + n^2)$

EKF for SLAM

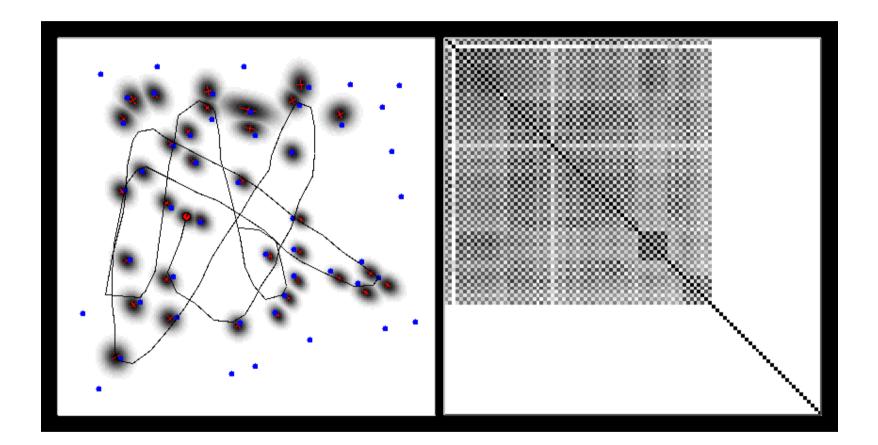




Мар

Correlation matrix

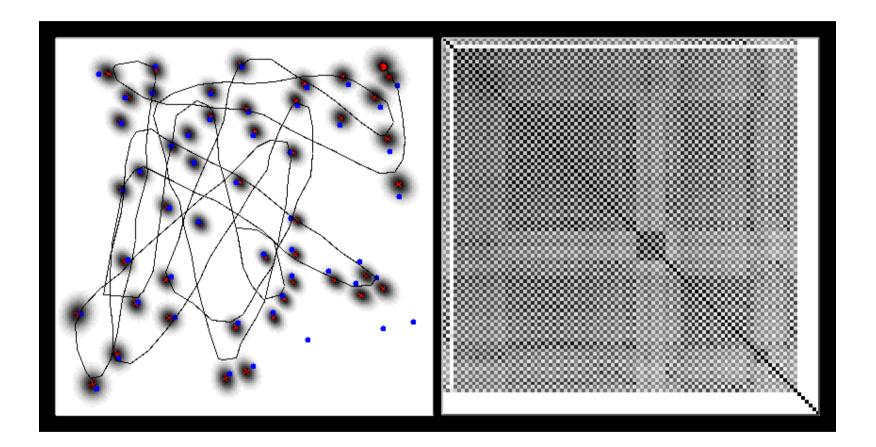
Courtesy of M. Montemerlo



Мар

Correlation matrix

Courtesy of M. Montemerlo



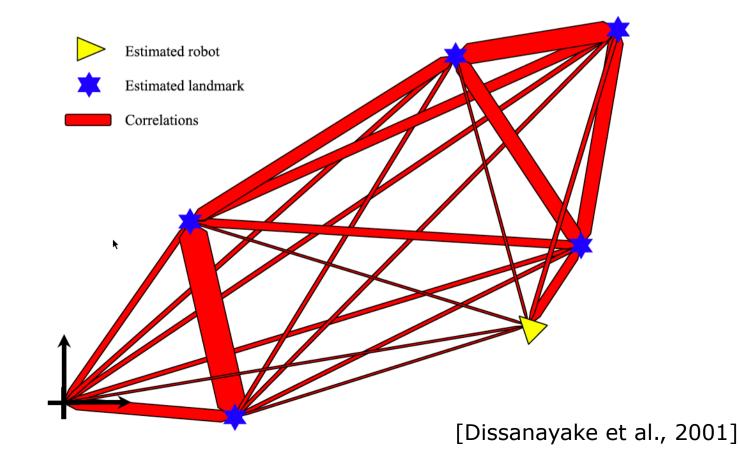
Мар

Correlation matrix

Courtesy of M. Montemerlo

EKF-SLAM Properties

In the limit, the landmark estimates become fully correlated



EKF-SLAM Complexity

- Cubic complexity only on the measurement dimensionality
- Cost per step: dominated by the number of landmarks: $O(n^2)$
- Memory consumption: $O(n^2)$
- The EKF becomes computationally intractable for large maps!

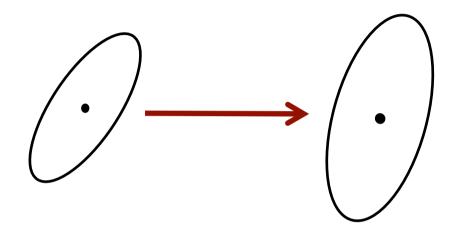
Unscented Kalman Filter (UKF)

UKF Motivation

- Kalman filter requires linear models
- EKF linearizes via Taylor expansion

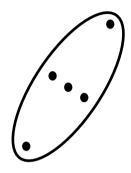
Is there a better way to linearize? Unscented Transform

Taylor Approximation (EKF)



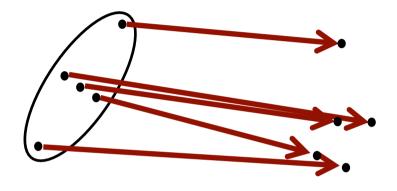
Linearization of the non-linear function through Taylor expansion

Unscented Transform



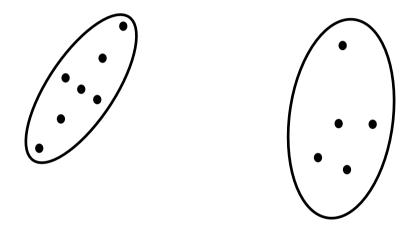
Compute a set of (so-called) sigma points

Unscented Transform



Transform each sigma point through the non-linear motion and measurement functions

Unscented Transform



Reconstruct a Gaussian from the transformed and weighted points

UKF vs. EKF

- Same results as EKF for linear models
- Better approximation than EKF for non-linear models
- Differences often "somewhat small"
- No Jacobians needed for the UKF
- Same complexity class
- Slightly slower than the EKF

EIF: Two Parameterizations for a Gaussian Distribution

momentscanonical
$$\Sigma = \Omega^{-1}$$
 $\Omega = \Sigma^{-1}$ $\mu = \Omega^{-1} \xi$ $\xi = \Sigma^{-1} \mu$

covariance matrix mean vector information matrix information vector

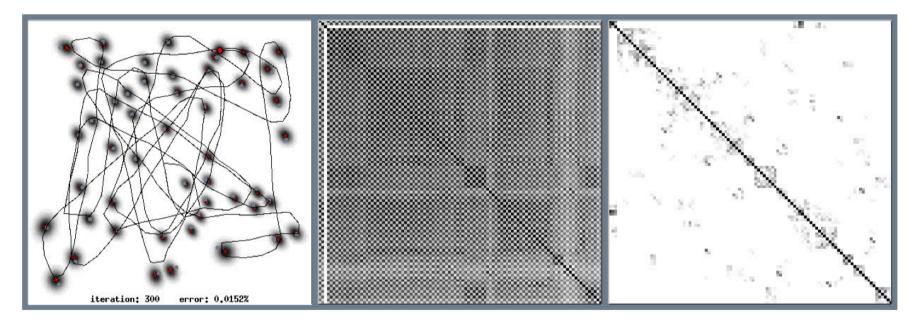
Extended Information Filter

- The EIF is the EKF in information form
- Instead of the moments $\Sigma,\mu\,$ the canonical form is maintained using Ω,ξ
- Conversion between information for and canonical form is expensive
- EIF has the same expressiveness than the EKF

EIF vs. EKF

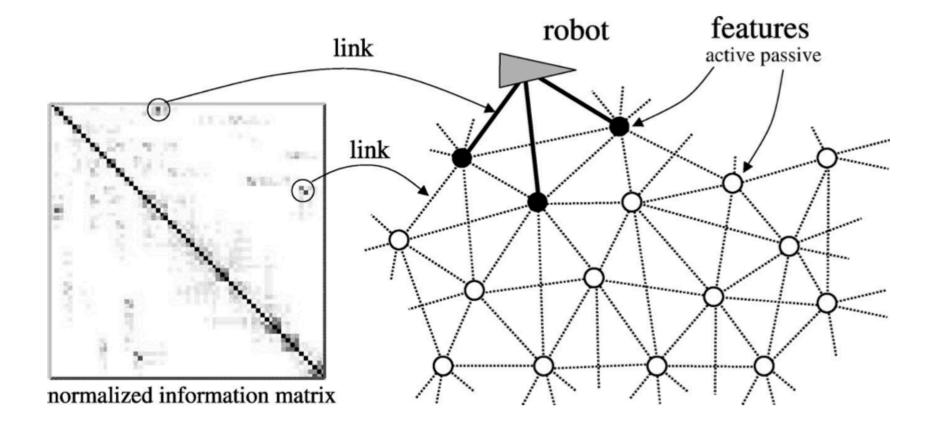
- Complexity of the prediction and corrections steps differs
- KF: efficient prediction, slow correction
- IF: slow prediction, efficient correction
- The application determines the filter"
- In practice, the EKF is more popular than the EIF

Motivation for SEIF SLAM



Gaussian estimate (map & pose) normalized covariance matrix normalized information matrix

Keep the Links Between in the Information Matrix Bounded



Four Steps of SEIF SLAM

- 1. Motion update
- 2. Update of the state estimate
- 3. Measurement update
- 4. Sparsification

Efficiency of SEIF SLAM

- Maintains the robot-landmark links only for a small set of landmarks at a time
- Removes robot-landmark links by sparsification (equal to assuming conditional independence)
- This also bounds the number of landmark-landmark links
- Exploits sparsity of the information matrix in all computations

SEIF SLAM vs. EKF SLAM

- SEIFs are an efficient approximation of the EIF for the SLAM problem
- Neglects links by sparsification
- Constant time updates of the filter (for known correspondences)
- Linear memory complexity
- Inferior quality compared to EKF SLAM

Summary

- KFs deal differently with non-linear motion and measurement functions
- KF, EKF, UKF, EIF suffer from complexity issues for large maps
- SEIF approximations lead to subquadratic memory and runtime complexity
- All filters presented so far, require Gaussian distributions