Robot Mapping

Grid Maps

Cyrill Stachniss

Features vs. Volumetric Maps

Courtesy by E. Nebot 2

Features

- So far, we only used feature maps
- Natural choice for Kalman filter-based SLAM systems
- Compact representation
- Multiple feature observations improve the position estimate (EKF)

Grid Maps

- Discretize the world into cells
- Grid structure is rigid
- Each cell is assumed to be occupied or free space
- Non-parametric model
- Require substantial memory resources
- Does not rely on a feature detector

Example

Assumption 1

 The area that corresponds to a cell is either completely free or occupied

Representation

Each cell is a binary random variable that models the occupancy

Occupancy Probability

- Each cell is a binary random variable that models the occupancy
- Cell is occupied $p(m_i) = 1$
- Cell is not occupied $p(m_i) = 0$
- No knowledge $p(m_i) = 0.5$
- The state is assumed to be static

Assumption 2

 The cells (the random variables) are independent of each other

Representation

The probability distribution of the map is given by the product over the cells

$$p(m) = \prod_{i} p(m_{i})$$

$$map \qquad cell$$

Representation

The probability distribution of the map is given by the product over the cells

example map (4-dim vector)

4 individual cells

Estimating a Map From Data

Given sensor data z_{1:t} and the poses x_{1:t} of the sensor, estimate the map

$$p(m \mid z_{1:t}, x_{1:t}) = \prod_{i} p(m_i \mid z_{1:t}, x_{1:t})$$

binary random variable

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$
$$\stackrel{\text{Markov}}{=} \frac{p(z_t \mid m_i, x_t) p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$p(z_{t} \mid m_{i}, x_{t}) \stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t})}{p(m_{i} \mid x_{t})}$$

$$p(m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_t \mid m_i, z_{1:t-1}, x_{1:t}) \ p(m_i \mid z_{1:t-1}, x_{1:t})}{p(z_t \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_t \mid m_i, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(z_t \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i \mid x_t) \ p(z_t \mid z_{1:t-1}, x_{1:t-1})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) \ p(z_{t} \mid x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) \ p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}, p(z_{t} \mid x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1}))}{p(m_{i} \mid x_{t}) \ p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}$$

$$p(m_{i} \mid z_{1:t}, x_{1:t}) \stackrel{\text{Bayes rule}}{=} \frac{p(z_{t} \mid m_{i}, z_{1:t-1}, x_{1:t}) p(m_{i} \mid z_{1:t-1}, x_{1:t})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(z_{t} \mid m_{i}, x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(z_{t} \mid z_{1:t-1}, x_{1:t})}$$

$$\stackrel{\text{Bayes rule}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid x_{t}) p(z_{t} \mid z_{1:t-1}, x_{1:t-1})}$$

$$\stackrel{\text{Markov}}{=} \frac{p(m_{i} \mid z_{t}, x_{t}) p(z_{t} \mid x_{t}) p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}{p(m_{i} \mid z_{1:t-1}, x_{1:t-1})}$$

Do exactly the same for the opposite event:

 $p(\neg m_i \mid z_{1:t}, x_{1:t}) \stackrel{\text{the same}}{=} \frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t})}$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{\frac{p(m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}{p(m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t})}}{\frac{p(\neg m_i \mid z_t, x_t) \ p(z_t \mid x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}{p(\neg m_i) \ p(z_t \mid z_{1:t-1}, x_{1:t-1})}}$$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{p(\neg m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \frac{p(m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)}{1 - p(m_i \mid z_t, x_t)} \frac{p(m_i \mid z_{1:t-1}, x_{1:t-1})}{1 - p(m_i \mid z_{1:t-1}, x_{1:t-1})} \frac{1 - p(m_i)}{p(m_i)}$$

 By computing the ratio of both probabilities, we obtain:

$$\frac{p(m_i \mid z_{1:t}, x_{1:t})}{1 - p(m_i \mid z_{1:t}, x_{1:t})} = \frac{p(m_i \mid z_t, x_t) \ p(m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(\neg m_i)}{p(\neg m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i)} = \underbrace{\frac{p(m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1}) \ p(m_i \mid z_{1:t-1}, x_{1:t-1})}_{\text{uses } z_t} \underbrace{\frac{p(m_i \mid z_t, x_t) \ p(\neg m_i \mid z_{1:t-1}, x_{1:t-1})}_{\text{recursive term}} \underbrace{\frac{1 - p(m_i) \ p(m_i)}{p(m_i)}}_{\text{prior}}$$

Log Odds Notation

Log odds ratio is defined as

$$l(x) = \log \frac{p(x)}{1 - p(x)}$$

• and with the ability to retrieve p(x) $p(x) = 1 - \frac{1}{1 + \exp l(x)}$

Occupancy Mapping in Log Odds Form

The product turns into a sum

or in short

 $l_{t,i} = \text{inv_sensor_model}(m_i, x_t, z_t) + l_{t-1,i} - l_0$

Occupancy Mapping Algorithm

highly efficient, only requires to compute sums

Occupancy Grid Mapping

- Developed in the mid 80'ies by Moravec and Elfes
- Originally developed for noisy sonars
- Also called "mapping with know poses"

Inverse Sensor Model for Sonars Range Sensors

In the following, consider the cells along the optical axis (red line)

Example: Incremental Updating of Occupancy Grids

Ĩ	+	X)	+		+		
	+	$\langle \mathbf{X} \rangle$	+	2)	+		
	+		+		+		
	+	<u>.</u>	+	.20	+	.20	
	+	2)	+	2)	+	2	
	+	. ¹	+	<u>e</u>)	+	$\underline{\mathfrak{s}}) \rightarrow$	(III)

Resulting Map Obtained with Ultrasound Sensors

Resulting Occupancy and Maximum Likelihood Map

The maximum likelihood map is obtained by rounding the probability for each cell to 0 or 1.

Inverse Sensor Model for Laser Range Finders

distance between sensor and cell under consideration

Occupancy Grids From Laser Scans to Maps

Example: MIT CSAIL 3rd Floor

Uni Freiburg Building 106

Summary

- Occupancy grid maps discretize the space into independent cells
- Each cell is a binary random variable estimating if the cell is occupied
- Static state binary Bayes filter per cell
- Mapping with known poses is easy
- Log odds model is fast to compute
- No need for predefined features

Literature

Static state binary Bayes filter

 Thrun et al.: "Probabilistic Robotics", Chapter 4.2

Occupancy Grid Mapping

 Thrun et al.: "Probabilistic Robotics", Chapter 9.1+9.2